Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunsnafv2 Structured version   Visualization version   GIF version

Theorem nfunsnafv2 47140
Description: If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn 6962. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
nfunsnafv2 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹)

Proof of Theorem nfunsnafv2
StepHypRef Expression
1 olc 867 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
2 ianor 982 . . . 4 (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
3 df-dfat 47034 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
42, 3xchnxbir 333 . . 3 𝐹 defAt 𝐴 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
51, 4sylibr 234 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → ¬ 𝐹 defAt 𝐴)
6 ndfatafv2nrn 47136 . 2 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
75, 6syl 17 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wcel 2108  wnel 3052  {csn 4648  dom cdm 5700  ran crn 5701  cres 5702  Fun wfun 6567   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nel 3053  df-rab 3444  df-v 3490  df-un 3981  df-in 3983  df-ss 3993  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-dfat 47034  df-afv2 47124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator