![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunsnafv2 | Structured version Visualization version GIF version |
Description: If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn 6872. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
nfunsnafv2 | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 866 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
2 | ianor 980 | . . . 4 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
3 | df-dfat 45027 | . . . 4 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
4 | 2, 3 | xchnxbir 333 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) |
5 | 1, 4 | sylibr 233 | . 2 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → ¬ 𝐹 defAt 𝐴) |
6 | ndfatafv2nrn 45129 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) | |
7 | 5, 6 | syl 17 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 845 ∈ wcel 2106 ∉ wnel 3047 {csn 4578 dom cdm 5625 ran crn 5626 ↾ cres 5627 Fun wfun 6478 defAt wdfat 45024 ''''cafv2 45116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nel 3048 df-rab 3405 df-v 3444 df-un 3907 df-in 3909 df-ss 3919 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-uni 4858 df-dfat 45027 df-afv2 45117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |