Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunsnafv2 Structured version   Visualization version   GIF version

Theorem nfunsnafv2 44604
Description: If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn 6793. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
nfunsnafv2 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹)

Proof of Theorem nfunsnafv2
StepHypRef Expression
1 olc 864 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
2 ianor 978 . . . 4 (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
3 df-dfat 44498 . . . 4 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
42, 3xchnxbir 332 . . 3 𝐹 defAt 𝐴 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴})))
51, 4sylibr 233 . 2 (¬ Fun (𝐹 ↾ {𝐴}) → ¬ 𝐹 defAt 𝐴)
6 ndfatafv2nrn 44600 . 2 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
75, 6syl 17 1 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  wcel 2108  wnel 3048  {csn 4558  dom cdm 5580  ran crn 5581  cres 5582  Fun wfun 6412   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nel 3049  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837  df-dfat 44498  df-afv2 44588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator