Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunsnafv2 | Structured version Visualization version GIF version |
Description: If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn 6793. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
nfunsnafv2 | ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 864 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
2 | ianor 978 | . . . 4 ⊢ (¬ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) | |
3 | df-dfat 44498 | . . . 4 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
4 | 2, 3 | xchnxbir 332 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 ↔ (¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun (𝐹 ↾ {𝐴}))) |
5 | 1, 4 | sylibr 233 | . 2 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → ¬ 𝐹 defAt 𝐴) |
6 | ndfatafv2nrn 44600 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) | |
7 | 5, 6 | syl 17 | 1 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 ∉ wnel 3048 {csn 4558 dom cdm 5580 ran crn 5581 ↾ cres 5582 Fun wfun 6412 defAt wdfat 44495 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nel 3049 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-dfat 44498 df-afv2 44588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |