| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is the empty set. See fvprcALT 6868 for a proof that uses ax-pow 5335 instead of ax-pr 5402. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5335. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6865 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
| 2 | tz6.12-2 6863 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ∃!weu 2567 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 |
| This theorem is referenced by: rnfvprc 6869 dffv3 6871 fvrn0 6905 ndmfv 6910 fv2prc 6920 csbfv 6925 dffv2 6973 brfvopabrbr 6982 fvmpti 6984 fvmptnf 7007 fvmptrabfv 7017 fvunsn 7170 fvmptopab 7459 fvmptopabOLD 7460 brfvopab 7462 1stval 7988 2ndval 7989 fipwuni 9436 fipwss 9439 tctr 9752 ranklim 9856 rankuni 9875 alephsing 10288 itunisuc 10431 itunitc 10433 tskmcl 10853 hashfn 14391 s1prc 14620 trclfvg 15032 trclfvcotrg 15033 dfrtrclrec2 15075 rtrclreclem4 15078 dfrtrcl2 15079 strfvss 17204 strfvi 17207 fveqprc 17208 oveqprc 17209 elbasfv 17232 ressbas 17255 firest 17444 topnval 17446 homffval 17700 comfffval 17708 oppchomfval 17724 xpcbas 18188 oduval 18298 oduleval 18299 lubfun 18360 glbfun 18373 odujoin 18416 odumeet 18418 oduclatb 18515 ipopos 18544 isipodrs 18545 plusffval 18622 grpidval 18637 gsum0 18660 ismnd 18713 frmdplusg 18830 frmd0 18836 efmndbas 18847 efmndbasabf 18848 efmndplusg 18856 dfgrp2e 18944 grpinvfval 18959 grpinvfvalALT 18960 grpinvfvi 18963 grpsubfval 18964 grpsubfvalALT 18965 mulgfval 19050 mulgfvalALT 19051 mulgfvi 19054 cntrval 19300 cntzval 19302 cntzrcl 19308 oppgval 19328 oppgplusfval 19329 symgval 19350 lactghmga 19384 psgnfval 19479 odfval 19511 odfvalALT 19512 oppglsm 19621 efgval 19696 mgpval 20101 mgpplusg 20102 ringidval 20141 opprval 20296 opprmulfval 20297 dvdsrval 20319 invrfval 20347 dvrfval 20360 rrgval 20655 staffval 20799 scaffval 20835 islss 20889 sralem 21132 sravsca 21137 sraip 21138 rlmval 21147 rlmsca2 21155 2idlval 21210 zrhval 21466 zlmvsca 21480 chrval 21482 evpmss 21544 ipffval 21606 ocvval 21625 elocv 21626 thlbas 21654 thlle 21655 thloc 21657 pjfval 21664 asclfval 21837 psrbas 21891 psr1val 22119 vr1val 22125 ply1val 22127 ply1basfvi 22174 ply1plusgfvi 22175 psr1sca2 22184 ply1sca2 22187 ply1ascl 22193 evl1fval 22264 evl1fval1 22267 toponsspwpw 22858 istps 22870 tgdif0 22928 indislem 22936 txindislem 23569 fsubbas 23803 filuni 23821 ussval 24196 isusp 24198 nmfval 24525 tngds 24585 tcphval 25168 deg1fval 26035 deg1fvi 26040 uc1pval 26095 mon1pval 26097 sltval2 27618 sltintdifex 27623 vtxval 28925 iedgval 28926 vtxvalprc 28970 iedgvalprc 28971 edgval 28974 prcliscplgr 29339 wwlks 29763 wwlksn 29765 clwwlk 29910 clwwlkn 29953 clwwlknonmpo 30016 vafval 30530 bafval 30531 smfval 30532 vsfval 30560 erlval 33199 fracval 33244 fracbas 33245 resvsca 33294 prclisacycgr 35119 mvtval 35468 mexval 35470 mexval2 35471 mdvval 35472 mrsubfval 35476 msubfval 35492 elmsubrn 35496 mvhfval 35501 mpstval 35503 msrfval 35505 mstaval 35512 mclsrcl 35529 mppsval 35540 mthmval 35543 fvsingle 35884 funpartfv 35909 fullfunfv 35911 rankeq1o 36135 atbase 39253 llnbase 39474 lplnbase 39499 lvolbase 39543 lhpbase 39963 mzpmfp 42717 kelac1 43034 mendbas 43151 mendplusgfval 43152 mendmulrfval 43154 mendvscafval 43157 brfvimex 43997 clsneibex 44073 neicvgbex 44083 sprssspr 47443 sprsymrelfvlem 47452 prprelprb 47479 prprspr2 47480 upwlkbprop 48061 ipolub00 48915 resccat 48989 oppcup3 49090 initopropdlem 49105 termopropdlem 49106 zeroopropdlem 49107 |
| Copyright terms: Public domain | W3C validator |