Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. See fvprcALT 6749 for a proof that uses ax-pow 5283 instead of ax-sep 5218 and ax-pr 5347. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5283. (Revised by BTernaryTau, 3-Aug-2024.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtruALT2 5353 | . . . . . . . . . 10 ⊢ ¬ ∀𝑦 𝑦 = 𝑥 | |
2 | exnal 1830 | . . . . . . . . . . 11 ⊢ (∃𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦 𝑥 = 𝑦) | |
3 | equcom 2022 | . . . . . . . . . . . 12 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
4 | 3 | albii 1823 | . . . . . . . . . . 11 ⊢ (∀𝑦 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥) |
5 | 2, 4 | xchbinx 333 | . . . . . . . . . 10 ⊢ (∃𝑦 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦 𝑦 = 𝑥) |
6 | 1, 5 | mpbir 230 | . . . . . . . . 9 ⊢ ∃𝑦 ¬ 𝑥 = 𝑦 |
7 | 6 | jctr 524 | . . . . . . . 8 ⊢ (∅ ∈ 𝐹 → (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦)) |
8 | 19.42v 1958 | . . . . . . . 8 ⊢ (∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ∃𝑦 ¬ 𝑥 = 𝑦)) | |
9 | 7, 8 | sylibr 233 | . . . . . . 7 ⊢ (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)) |
10 | opprc1 4825 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝑥〉 = ∅) | |
11 | 10 | eleq1d 2823 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑥〉 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) |
12 | opprc1 4825 | . . . . . . . . . . . . 13 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝑦〉 = ∅) | |
13 | 12 | eleq1d 2823 | . . . . . . . . . . . 12 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑦〉 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) |
14 | 11, 13 | anbi12d 630 | . . . . . . . . . . 11 ⊢ (¬ 𝐴 ∈ V → ((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ↔ (∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹))) |
15 | anidm 564 | . . . . . . . . . . 11 ⊢ ((∅ ∈ 𝐹 ∧ ∅ ∈ 𝐹) ↔ ∅ ∈ 𝐹) | |
16 | 14, 15 | bitrdi 286 | . . . . . . . . . 10 ⊢ (¬ 𝐴 ∈ V → ((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ↔ ∅ ∈ 𝐹)) |
17 | 16 | anbi1d 629 | . . . . . . . . 9 ⊢ (¬ 𝐴 ∈ V → (((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ (∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))) |
18 | 17 | exbidv 1925 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → (∃𝑦((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦))) |
19 | 11, 18 | imbi12d 344 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ((〈𝐴, 𝑥〉 ∈ 𝐹 → ∃𝑦((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)) ↔ (∅ ∈ 𝐹 → ∃𝑦(∅ ∈ 𝐹 ∧ ¬ 𝑥 = 𝑦)))) |
20 | 9, 19 | mpbiri 257 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (〈𝐴, 𝑥〉 ∈ 𝐹 → ∃𝑦((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦))) |
21 | df-br 5071 | . . . . . 6 ⊢ (𝐴𝐹𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐹) | |
22 | df-br 5071 | . . . . . . . . 9 ⊢ (𝐴𝐹𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹) | |
23 | 21, 22 | anbi12i 626 | . . . . . . . 8 ⊢ ((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ↔ (〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹)) |
24 | 23 | anbi1i 623 | . . . . . . 7 ⊢ (((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)) |
25 | 24 | exbii 1851 | . . . . . 6 ⊢ (∃𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑦((〈𝐴, 𝑥〉 ∈ 𝐹 ∧ 〈𝐴, 𝑦〉 ∈ 𝐹) ∧ ¬ 𝑥 = 𝑦)) |
26 | 20, 21, 25 | 3imtr4g 295 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝑥 → ∃𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))) |
27 | 26 | eximdv 1921 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ∃𝑥∃𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦))) |
28 | exnal 1830 | . . . . 5 ⊢ (∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) → 𝑥 = 𝑦) ↔ ¬ ∀𝑥∀𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) → 𝑥 = 𝑦)) | |
29 | exanali 1863 | . . . . . 6 ⊢ (∃𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ¬ ∀𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) → 𝑥 = 𝑦)) | |
30 | 29 | exbii 1851 | . . . . 5 ⊢ (∃𝑥∃𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦) ↔ ∃𝑥 ¬ ∀𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) → 𝑥 = 𝑦)) |
31 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝑦)) | |
32 | 31 | mo4 2566 | . . . . . 6 ⊢ (∃*𝑥 𝐴𝐹𝑥 ↔ ∀𝑥∀𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) → 𝑥 = 𝑦)) |
33 | 32 | notbii 319 | . . . . 5 ⊢ (¬ ∃*𝑥 𝐴𝐹𝑥 ↔ ¬ ∀𝑥∀𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) → 𝑥 = 𝑦)) |
34 | 28, 30, 33 | 3bitr4ri 303 | . . . 4 ⊢ (¬ ∃*𝑥 𝐴𝐹𝑥 ↔ ∃𝑥∃𝑦((𝐴𝐹𝑥 ∧ 𝐴𝐹𝑦) ∧ ¬ 𝑥 = 𝑦)) |
35 | 27, 34 | syl6ibr 251 | . . 3 ⊢ (¬ 𝐴 ∈ V → (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥)) |
36 | df-eu 2569 | . . . . 5 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥)) | |
37 | 36 | notbii 319 | . . . 4 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥)) |
38 | imnan 399 | . . . 4 ⊢ ((∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥) ↔ ¬ (∃𝑥 𝐴𝐹𝑥 ∧ ∃*𝑥 𝐴𝐹𝑥)) | |
39 | 37, 38 | bitr4i 277 | . . 3 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ (∃𝑥 𝐴𝐹𝑥 → ¬ ∃*𝑥 𝐴𝐹𝑥)) |
40 | 35, 39 | sylibr 233 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) |
41 | tz6.12-2 6745 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
42 | 40, 41 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃*wmo 2538 ∃!weu 2568 Vcvv 3422 ∅c0 4253 〈cop 4564 class class class wbr 5070 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 |
This theorem is referenced by: rnfvprc 6750 dffv3 6752 fvrn0 6784 ndmfv 6786 fv2prc 6796 csbfv 6801 dffv2 6845 brfvopabrbr 6854 fvmpti 6856 fvmptnf 6879 fvmptrabfv 6888 fvunsn 7033 fvmptopab 7308 brfvopab 7310 1stval 7806 2ndval 7807 fipwuni 9115 fipwss 9118 tctr 9429 ranklim 9533 rankuni 9552 alephsing 9963 itunisuc 10106 itunitc 10108 tskmcl 10528 hashfn 14018 s1prc 14237 trclfvg 14654 trclfvcotrg 14655 dfrtrclrec2 14697 rtrclreclem4 14700 dfrtrcl2 14701 strfvss 16816 strfvi 16819 fveqprc 16820 oveqprc 16821 setsnidOLD 16839 elbasfv 16846 ressbas 16873 ressbasOLD 16874 resslemOLD 16878 firest 17060 topnval 17062 homffval 17316 comfffval 17324 oppchomfval 17340 oppchomfvalOLD 17341 oppcbasOLD 17346 xpcbas 17811 oduval 17922 oduleval 17923 lubfun 17985 glbfun 17998 odujoin 18041 odumeet 18043 oduclatb 18140 ipopos 18169 isipodrs 18170 plusffval 18247 grpidval 18260 gsum0 18283 ismnd 18303 frmdplusg 18408 frmd0 18414 efmndbas 18425 efmndbasabf 18426 efmndplusg 18434 dfgrp2e 18520 grpinvfval 18533 grpinvfvalALT 18534 grpinvfvi 18537 grpsubfval 18538 grpsubfvalALT 18539 mulgfval 18617 mulgfvalALT 18618 mulgfvi 18621 cntrval 18840 cntzval 18842 cntzrcl 18848 oppgval 18866 oppgplusfval 18867 symgval 18891 lactghmga 18928 psgnfval 19023 odfval 19055 odfvalALT 19056 oppglsm 19162 efgval 19238 mgpval 19638 mgpplusg 19639 ringidval 19654 opprval 19778 opprmulfval 19779 dvdsrval 19802 invrfval 19830 dvrfval 19841 staffval 20022 scaffval 20056 islss 20111 sralem 20354 sralemOLD 20355 sravsca 20363 sraip 20364 rlmval 20374 rlmsca2 20384 2idlval 20417 rrgval 20471 zrhval 20621 zlmlemOLD 20631 zlmvsca 20639 chrval 20641 evpmss 20703 ipffval 20765 ocvval 20784 elocv 20785 thlbas 20813 thlle 20814 thloc 20816 pjfval 20823 asclfval 20993 psrbas 21057 psr1val 21267 vr1val 21273 ply1val 21275 ply1basfvi 21322 ply1plusgfvi 21323 psr1sca2 21332 ply1sca2 21335 ply1ascl 21339 evl1fval 21404 evl1fval1 21407 toponsspwpw 21979 istps 21991 tgdif0 22050 indislem 22058 txindislem 22692 fsubbas 22926 filuni 22944 ussval 23319 isusp 23321 nmfval 23650 tnglemOLD 23703 tngds 23717 tngdsOLD 23718 tcphval 24287 deg1fval 25150 deg1fvi 25155 uc1pval 25209 mon1pval 25211 ttglemOLD 27142 vtxval 27273 iedgval 27274 vtxvalprc 27318 iedgvalprc 27319 edgval 27322 prcliscplgr 27684 wwlks 28101 wwlksn 28103 clwwlk 28248 clwwlkn 28291 clwwlknonmpo 28354 vafval 28866 bafval 28867 smfval 28868 vsfval 28896 resvsca 31431 resvlemOLD 31433 prclisacycgr 33013 mvtval 33362 mexval 33364 mexval2 33365 mdvval 33366 mrsubfval 33370 msubfval 33386 elmsubrn 33390 mvhfval 33395 mpstval 33397 msrfval 33399 mstaval 33406 mclsrcl 33423 mppsval 33434 mthmval 33437 sltval2 33786 sltintdifex 33791 fvsingle 34149 funpartfv 34174 fullfunfv 34176 rankeq1o 34400 atbase 37230 llnbase 37450 lplnbase 37475 lvolbase 37519 lhpbase 37939 mzpmfp 40485 kelac1 40804 mendbas 40925 mendplusgfval 40926 mendmulrfval 40928 mendvscafval 40931 brfvimex 41525 clsneibex 41601 neicvgbex 41611 sprssspr 44821 sprsymrelfvlem 44830 prprelprb 44857 prprspr2 44858 upwlkbprop 45188 ipolub00 46167 |
Copyright terms: Public domain | W3C validator |