Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. See fvprcALT 6776 for a proof that uses ax-pow 5289 instead of ax-pr 5353. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5289. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6773 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
2 | tz6.12-2 6771 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 ∃!weu 2569 Vcvv 3433 ∅c0 4257 class class class wbr 5075 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 |
This theorem is referenced by: rnfvprc 6777 dffv3 6779 fvrn0 6811 ndmfv 6813 fv2prc 6823 csbfv 6828 dffv2 6872 brfvopabrbr 6881 fvmpti 6883 fvmptnf 6906 fvmptrabfv 6915 fvunsn 7060 fvmptopab 7338 fvmptopabOLD 7339 brfvopab 7341 1stval 7842 2ndval 7843 fipwuni 9194 fipwss 9197 tctr 9507 ranklim 9611 rankuni 9630 alephsing 10041 itunisuc 10184 itunitc 10186 tskmcl 10606 hashfn 14099 s1prc 14318 trclfvg 14735 trclfvcotrg 14736 dfrtrclrec2 14778 rtrclreclem4 14781 dfrtrcl2 14782 strfvss 16897 strfvi 16900 fveqprc 16901 oveqprc 16902 setsnidOLD 16920 elbasfv 16927 ressbas 16956 ressbasOLD 16957 resslemOLD 16961 firest 17152 topnval 17154 homffval 17408 comfffval 17416 oppchomfval 17432 oppchomfvalOLD 17433 oppcbasOLD 17438 xpcbas 17904 oduval 18015 oduleval 18016 lubfun 18079 glbfun 18092 odujoin 18135 odumeet 18137 oduclatb 18234 ipopos 18263 isipodrs 18264 plusffval 18341 grpidval 18354 gsum0 18377 ismnd 18397 frmdplusg 18502 frmd0 18508 efmndbas 18519 efmndbasabf 18520 efmndplusg 18528 dfgrp2e 18614 grpinvfval 18627 grpinvfvalALT 18628 grpinvfvi 18631 grpsubfval 18632 grpsubfvalALT 18633 mulgfval 18711 mulgfvalALT 18712 mulgfvi 18715 cntrval 18934 cntzval 18936 cntzrcl 18942 oppgval 18960 oppgplusfval 18961 symgval 18985 lactghmga 19022 psgnfval 19117 odfval 19149 odfvalALT 19150 oppglsm 19256 efgval 19332 mgpval 19732 mgpplusg 19733 ringidval 19748 opprval 19872 opprmulfval 19873 dvdsrval 19896 invrfval 19924 dvrfval 19935 staffval 20116 scaffval 20150 islss 20205 sralem 20448 sralemOLD 20449 sravsca 20458 sravscaOLD 20459 sraip 20460 rlmval 20470 rlmsca2 20480 2idlval 20513 rrgval 20567 zrhval 20718 zlmlemOLD 20728 zlmvsca 20736 chrval 20738 evpmss 20800 ipffval 20862 ocvval 20881 elocv 20882 thlbas 20910 thlbasOLD 20911 thlle 20912 thlleOLD 20913 thloc 20915 pjfval 20922 asclfval 21092 psrbas 21156 psr1val 21366 vr1val 21372 ply1val 21374 ply1basfvi 21421 ply1plusgfvi 21422 psr1sca2 21431 ply1sca2 21434 ply1ascl 21438 evl1fval 21503 evl1fval1 21506 toponsspwpw 22080 istps 22092 tgdif0 22151 indislem 22159 txindislem 22793 fsubbas 23027 filuni 23045 ussval 23420 isusp 23422 nmfval 23753 tnglemOLD 23806 tngds 23820 tngdsOLD 23821 tcphval 24391 deg1fval 25254 deg1fvi 25259 uc1pval 25313 mon1pval 25315 ttglemOLD 27248 vtxval 27379 iedgval 27380 vtxvalprc 27424 iedgvalprc 27425 edgval 27428 prcliscplgr 27790 wwlks 28209 wwlksn 28211 clwwlk 28356 clwwlkn 28399 clwwlknonmpo 28462 vafval 28974 bafval 28975 smfval 28976 vsfval 29004 resvsca 31538 resvlemOLD 31540 prclisacycgr 33122 mvtval 33471 mexval 33473 mexval2 33474 mdvval 33475 mrsubfval 33479 msubfval 33495 elmsubrn 33499 mvhfval 33504 mpstval 33506 msrfval 33508 mstaval 33515 mclsrcl 33532 mppsval 33543 mthmval 33546 sltval2 33868 sltintdifex 33873 fvsingle 34231 funpartfv 34256 fullfunfv 34258 rankeq1o 34482 atbase 37310 llnbase 37530 lplnbase 37555 lvolbase 37599 lhpbase 38019 mzpmfp 40576 kelac1 40895 mendbas 41016 mendplusgfval 41017 mendmulrfval 41019 mendvscafval 41022 brfvimex 41643 clsneibex 41719 neicvgbex 41729 sprssspr 44944 sprsymrelfvlem 44953 prprelprb 44980 prprspr2 44981 upwlkbprop 45311 ipolub00 46290 |
Copyright terms: Public domain | W3C validator |