| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is the empty set. See fvprcALT 6854 for a proof that uses ax-pow 5323 instead of ax-pr 5390. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6851 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
| 2 | tz6.12-2 6849 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 Vcvv 3450 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: rnfvprc 6855 dffv3 6857 fvrn0 6891 ndmfv 6896 fv2prc 6906 csbfv 6911 dffv2 6959 brfvopabrbr 6968 fvmpti 6970 fvmptnf 6993 fvmptrabfv 7003 fvunsn 7156 fvmptopab 7446 fvmptopabOLD 7447 brfvopab 7449 1stval 7973 2ndval 7974 fipwuni 9384 fipwss 9387 tctr 9700 ranklim 9804 rankuni 9823 alephsing 10236 itunisuc 10379 itunitc 10381 tskmcl 10801 hashfn 14347 s1prc 14576 trclfvg 14988 trclfvcotrg 14989 dfrtrclrec2 15031 rtrclreclem4 15034 dfrtrcl2 15035 strfvss 17164 strfvi 17167 fveqprc 17168 oveqprc 17169 elbasfv 17192 ressbas 17213 firest 17402 topnval 17404 homffval 17658 comfffval 17666 oppchomfval 17682 xpcbas 18146 oduval 18256 oduleval 18257 lubfun 18318 glbfun 18331 odujoin 18374 odumeet 18376 oduclatb 18473 ipopos 18502 isipodrs 18503 plusffval 18580 grpidval 18595 gsum0 18618 ismnd 18671 frmdplusg 18788 frmd0 18794 efmndbas 18805 efmndbasabf 18806 efmndplusg 18814 dfgrp2e 18902 grpinvfval 18917 grpinvfvalALT 18918 grpinvfvi 18921 grpsubfval 18922 grpsubfvalALT 18923 mulgfval 19008 mulgfvalALT 19009 mulgfvi 19012 cntrval 19258 cntzval 19260 cntzrcl 19266 oppgval 19286 oppgplusfval 19287 symgval 19308 lactghmga 19342 psgnfval 19437 odfval 19469 odfvalALT 19470 oppglsm 19579 efgval 19654 mgpval 20059 mgpplusg 20060 ringidval 20099 opprval 20254 opprmulfval 20255 dvdsrval 20277 invrfval 20305 dvrfval 20318 rrgval 20613 staffval 20757 scaffval 20793 islss 20847 sralem 21090 sravsca 21095 sraip 21096 rlmval 21105 rlmsca2 21113 2idlval 21168 zrhval 21424 zlmvsca 21438 chrval 21440 evpmss 21502 ipffval 21564 ocvval 21583 elocv 21584 thlbas 21612 thlle 21613 thloc 21615 pjfval 21622 asclfval 21795 psrbas 21849 psr1val 22077 vr1val 22083 ply1val 22085 ply1basfvi 22132 ply1plusgfvi 22133 psr1sca2 22142 ply1sca2 22145 ply1ascl 22151 evl1fval 22222 evl1fval1 22225 toponsspwpw 22816 istps 22828 tgdif0 22886 indislem 22894 txindislem 23527 fsubbas 23761 filuni 23779 ussval 24154 isusp 24156 nmfval 24483 tngds 24543 tcphval 25125 deg1fval 25992 deg1fvi 25997 uc1pval 26052 mon1pval 26054 sltval2 27575 sltintdifex 27580 vtxval 28934 iedgval 28935 vtxvalprc 28979 iedgvalprc 28980 edgval 28983 prcliscplgr 29348 wwlks 29772 wwlksn 29774 clwwlk 29919 clwwlkn 29962 clwwlknonmpo 30025 vafval 30539 bafval 30540 smfval 30541 vsfval 30569 erlval 33216 fracval 33261 fracbas 33262 resvsca 33311 prclisacycgr 35145 mvtval 35494 mexval 35496 mexval2 35497 mdvval 35498 mrsubfval 35502 msubfval 35518 elmsubrn 35522 mvhfval 35527 mpstval 35529 msrfval 35531 mstaval 35538 mclsrcl 35555 mppsval 35566 mthmval 35569 fvsingle 35915 funpartfv 35940 fullfunfv 35942 rankeq1o 36166 atbase 39289 llnbase 39510 lplnbase 39535 lvolbase 39579 lhpbase 39999 mzpmfp 42742 kelac1 43059 mendbas 43176 mendplusgfval 43177 mendmulrfval 43179 mendvscafval 43182 brfvimex 44022 clsneibex 44098 neicvgbex 44108 sprssspr 47486 sprsymrelfvlem 47495 prprelprb 47522 prprspr2 47523 upwlkbprop 48130 ipolub00 48985 resccat 49067 oppcup3 49202 initopropdlem 49233 termopropdlem 49234 zeroopropdlem 49235 catcrcl 49388 |
| Copyright terms: Public domain | W3C validator |