| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is the empty set. See fvprcALT 6819 for a proof that uses ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6816 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
| 2 | tz6.12-2 6814 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: rnfvprc 6820 dffv3 6822 fvrn0 6854 ndmfv 6859 fv2prc 6869 csbfv 6874 dffv2 6922 brfvopabrbr 6931 fvmpti 6933 fvmptnf 6956 fvmptrabfv 6966 fvunsn 7119 fvmptopab 7408 brfvopab 7410 1stval 7933 2ndval 7934 fipwuni 9335 fipwss 9338 tctr 9655 ranklim 9759 rankuni 9778 alephsing 10189 itunisuc 10332 itunitc 10334 tskmcl 10754 hashfn 14301 s1prc 14530 trclfvg 14941 trclfvcotrg 14942 dfrtrclrec2 14984 rtrclreclem4 14987 dfrtrcl2 14988 strfvss 17117 strfvi 17120 fveqprc 17121 oveqprc 17122 elbasfv 17145 ressbas 17166 firest 17355 topnval 17357 homffval 17615 comfffval 17623 oppchomfval 17639 xpcbas 18103 oduval 18213 oduleval 18214 lubfun 18275 glbfun 18288 odujoin 18331 odumeet 18333 oduclatb 18432 ipopos 18461 isipodrs 18462 plusffval 18539 grpidval 18554 gsum0 18577 ismnd 18630 frmdplusg 18747 frmd0 18753 efmndbas 18764 efmndbasabf 18765 efmndplusg 18773 dfgrp2e 18861 grpinvfval 18876 grpinvfvalALT 18877 grpinvfvi 18880 grpsubfval 18881 grpsubfvalALT 18882 mulgfval 18967 mulgfvalALT 18968 mulgfvi 18971 cntrval 19217 cntzval 19219 cntzrcl 19225 oppgval 19245 oppgplusfval 19246 symgval 19269 lactghmga 19303 psgnfval 19398 odfval 19430 odfvalALT 19431 oppglsm 19540 efgval 19615 mgpval 20047 mgpplusg 20048 ringidval 20087 opprval 20242 opprmulfval 20243 dvdsrval 20265 invrfval 20293 dvrfval 20306 rrgval 20601 staffval 20745 scaffval 20802 islss 20856 sralem 21099 sravsca 21104 sraip 21105 rlmval 21114 rlmsca2 21122 2idlval 21177 zrhval 21433 zlmvsca 21447 chrval 21449 evpmss 21512 ipffval 21574 ocvval 21593 elocv 21594 thlbas 21622 thlle 21623 thloc 21625 pjfval 21632 asclfval 21805 psrbas 21859 psr1val 22087 vr1val 22093 ply1val 22095 ply1basfvi 22142 ply1plusgfvi 22143 psr1sca2 22152 ply1sca2 22155 ply1ascl 22161 evl1fval 22232 evl1fval1 22235 toponsspwpw 22826 istps 22838 tgdif0 22896 indislem 22904 txindislem 23537 fsubbas 23771 filuni 23789 ussval 24164 isusp 24166 nmfval 24493 tngds 24553 tcphval 25135 deg1fval 26002 deg1fvi 26007 uc1pval 26062 mon1pval 26064 sltval2 27585 sltintdifex 27590 vtxval 28964 iedgval 28965 vtxvalprc 29009 iedgvalprc 29010 edgval 29013 prcliscplgr 29378 wwlks 29799 wwlksn 29801 clwwlk 29946 clwwlkn 29989 clwwlknonmpo 30052 vafval 30566 bafval 30567 smfval 30568 vsfval 30596 erlval 33217 fracval 33262 fracbas 33263 resvsca 33289 prclisacycgr 35143 mvtval 35492 mexval 35494 mexval2 35495 mdvval 35496 mrsubfval 35500 msubfval 35516 elmsubrn 35520 mvhfval 35525 mpstval 35527 msrfval 35529 mstaval 35536 mclsrcl 35553 mppsval 35564 mthmval 35567 fvsingle 35913 funpartfv 35938 fullfunfv 35940 rankeq1o 36164 atbase 39287 llnbase 39508 lplnbase 39533 lvolbase 39577 lhpbase 39997 mzpmfp 42740 kelac1 43056 mendbas 43173 mendplusgfval 43174 mendmulrfval 43176 mendvscafval 43179 brfvimex 44019 clsneibex 44095 neicvgbex 44105 sprssspr 47485 sprsymrelfvlem 47494 prprelprb 47521 prprspr2 47522 upwlkbprop 48142 ipolub00 48997 resccat 49079 oppcup3 49214 initopropdlem 49245 termopropdlem 49246 zeroopropdlem 49247 catcrcl 49400 |
| Copyright terms: Public domain | W3C validator |