![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. See fvprcALT 6884 for a proof that uses ax-pow 5363 instead of ax-pr 5427. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5363. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6881 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
2 | tz6.12-2 6879 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∃!weu 2562 Vcvv 3474 ∅c0 4322 class class class wbr 5148 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: rnfvprc 6885 dffv3 6887 fvrn0 6921 ndmfv 6926 fv2prc 6936 csbfv 6941 dffv2 6986 brfvopabrbr 6995 fvmpti 6997 fvmptnf 7020 fvmptrabfv 7029 fvunsn 7179 fvmptopab 7465 fvmptopabOLD 7466 brfvopab 7468 1stval 7979 2ndval 7980 fipwuni 9423 fipwss 9426 tctr 9737 ranklim 9841 rankuni 9860 alephsing 10273 itunisuc 10416 itunitc 10418 tskmcl 10838 hashfn 14339 s1prc 14558 trclfvg 14966 trclfvcotrg 14967 dfrtrclrec2 15009 rtrclreclem4 15012 dfrtrcl2 15013 strfvss 17124 strfvi 17127 fveqprc 17128 oveqprc 17129 setsnidOLD 17147 elbasfv 17154 ressbas 17183 ressbasOLD 17184 resslemOLD 17191 firest 17382 topnval 17384 homffval 17638 comfffval 17646 oppchomfval 17662 oppchomfvalOLD 17663 oppcbasOLD 17668 xpcbas 18134 oduval 18245 oduleval 18246 lubfun 18309 glbfun 18322 odujoin 18365 odumeet 18367 oduclatb 18464 ipopos 18493 isipodrs 18494 plusffval 18571 grpidval 18586 gsum0 18609 ismnd 18662 frmdplusg 18771 frmd0 18777 efmndbas 18788 efmndbasabf 18789 efmndplusg 18797 dfgrp2e 18884 grpinvfval 18899 grpinvfvalALT 18900 grpinvfvi 18903 grpsubfval 18904 grpsubfvalALT 18905 mulgfval 18988 mulgfvalALT 18989 mulgfvi 18992 cntrval 19224 cntzval 19226 cntzrcl 19232 oppgval 19252 oppgplusfval 19253 symgval 19277 lactghmga 19314 psgnfval 19409 odfval 19441 odfvalALT 19442 oppglsm 19551 efgval 19626 mgpval 20031 mgpplusg 20032 ringidval 20077 opprval 20226 opprmulfval 20227 dvdsrval 20252 invrfval 20280 dvrfval 20293 staffval 20598 scaffval 20634 islss 20689 sralem 20935 sralemOLD 20936 sravsca 20945 sravscaOLD 20946 sraip 20947 rlmval 20958 rlmsca2 20968 2idlval 21007 rrgval 21103 zrhval 21276 zlmlemOLD 21286 zlmvsca 21294 chrval 21296 evpmss 21358 ipffval 21420 ocvval 21439 elocv 21440 thlbas 21468 thlbasOLD 21469 thlle 21470 thlleOLD 21471 thloc 21473 pjfval 21480 asclfval 21652 psrbas 21716 psr1val 21929 vr1val 21935 ply1val 21937 ply1basfvi 21983 ply1plusgfvi 21984 psr1sca2 21993 ply1sca2 21996 ply1ascl 22000 evl1fval 22067 evl1fval1 22070 toponsspwpw 22644 istps 22656 tgdif0 22715 indislem 22723 txindislem 23357 fsubbas 23591 filuni 23609 ussval 23984 isusp 23986 nmfval 24317 tnglemOLD 24370 tngds 24384 tngdsOLD 24385 tcphval 24959 deg1fval 25822 deg1fvi 25827 uc1pval 25881 mon1pval 25883 sltval2 27383 sltintdifex 27388 ttglemOLD 28384 vtxval 28515 iedgval 28516 vtxvalprc 28560 iedgvalprc 28561 edgval 28564 prcliscplgr 28926 wwlks 29344 wwlksn 29346 clwwlk 29491 clwwlkn 29534 clwwlknonmpo 29597 vafval 30111 bafval 30112 smfval 30113 vsfval 30141 resvsca 32702 resvlemOLD 32704 prclisacycgr 34428 mvtval 34777 mexval 34779 mexval2 34780 mdvval 34781 mrsubfval 34785 msubfval 34801 elmsubrn 34805 mvhfval 34810 mpstval 34812 msrfval 34814 mstaval 34821 mclsrcl 34838 mppsval 34849 mthmval 34852 fvsingle 35184 funpartfv 35209 fullfunfv 35211 rankeq1o 35435 atbase 38462 llnbase 38683 lplnbase 38708 lvolbase 38752 lhpbase 39172 mzpmfp 41787 kelac1 42107 mendbas 42228 mendplusgfval 42229 mendmulrfval 42231 mendvscafval 42234 brfvimex 43079 clsneibex 43155 neicvgbex 43165 sprssspr 46448 sprsymrelfvlem 46457 prprelprb 46484 prprspr2 46485 upwlkbprop 46815 ipolub00 47706 |
Copyright terms: Public domain | W3C validator |