![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. See fvprcALT 6899 for a proof that uses ax-pow 5370 instead of ax-pr 5437. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5370. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6896 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
2 | tz6.12-2 6894 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1536 ∈ wcel 2105 ∃!weu 2565 Vcvv 3477 ∅c0 4338 class class class wbr 5147 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 |
This theorem is referenced by: rnfvprc 6900 dffv3 6902 fvrn0 6936 ndmfv 6941 fv2prc 6951 csbfv 6956 dffv2 7003 brfvopabrbr 7012 fvmpti 7014 fvmptnf 7037 fvmptrabfv 7047 fvunsn 7198 fvmptopab 7486 fvmptopabOLD 7487 brfvopab 7489 1stval 8014 2ndval 8015 fipwuni 9463 fipwss 9466 tctr 9777 ranklim 9881 rankuni 9900 alephsing 10313 itunisuc 10456 itunitc 10458 tskmcl 10878 hashfn 14410 s1prc 14638 trclfvg 15050 trclfvcotrg 15051 dfrtrclrec2 15093 rtrclreclem4 15096 dfrtrcl2 15097 strfvss 17220 strfvi 17223 fveqprc 17224 oveqprc 17225 setsnidOLD 17243 elbasfv 17250 ressbas 17279 ressbasOLD 17280 resslemOLD 17287 firest 17478 topnval 17480 homffval 17734 comfffval 17742 oppchomfval 17758 oppchomfvalOLD 17759 oppcbasOLD 17764 xpcbas 18233 oduval 18344 oduleval 18345 lubfun 18409 glbfun 18422 odujoin 18465 odumeet 18467 oduclatb 18564 ipopos 18593 isipodrs 18594 plusffval 18671 grpidval 18686 gsum0 18709 ismnd 18762 frmdplusg 18879 frmd0 18885 efmndbas 18896 efmndbasabf 18897 efmndplusg 18905 dfgrp2e 18993 grpinvfval 19008 grpinvfvalALT 19009 grpinvfvi 19012 grpsubfval 19013 grpsubfvalALT 19014 mulgfval 19099 mulgfvalALT 19100 mulgfvi 19103 cntrval 19349 cntzval 19351 cntzrcl 19357 oppgval 19377 oppgplusfval 19378 symgval 19402 lactghmga 19437 psgnfval 19532 odfval 19564 odfvalALT 19565 oppglsm 19674 efgval 19749 mgpval 20154 mgpplusg 20155 ringidval 20200 opprval 20351 opprmulfval 20352 dvdsrval 20377 invrfval 20405 dvrfval 20418 rrgval 20713 staffval 20858 scaffval 20894 islss 20949 sralem 21192 sralemOLD 21193 sravsca 21202 sravscaOLD 21203 sraip 21204 rlmval 21215 rlmsca2 21223 2idlval 21278 zrhval 21535 zlmlemOLD 21545 zlmvsca 21553 chrval 21555 evpmss 21621 ipffval 21683 ocvval 21702 elocv 21703 thlbas 21731 thlbasOLD 21732 thlle 21733 thlleOLD 21734 thloc 21736 pjfval 21743 asclfval 21916 psrbas 21970 psr1val 22202 vr1val 22208 ply1val 22210 ply1basfvi 22257 ply1plusgfvi 22258 psr1sca2 22267 ply1sca2 22270 ply1ascl 22276 evl1fval 22347 evl1fval1 22350 toponsspwpw 22943 istps 22955 tgdif0 23014 indislem 23022 txindislem 23656 fsubbas 23890 filuni 23908 ussval 24283 isusp 24285 nmfval 24616 tnglemOLD 24669 tngds 24683 tngdsOLD 24684 tcphval 25265 deg1fval 26133 deg1fvi 26138 uc1pval 26193 mon1pval 26195 sltval2 27715 sltintdifex 27720 ttglemOLD 28900 vtxval 29031 iedgval 29032 vtxvalprc 29076 iedgvalprc 29077 edgval 29080 prcliscplgr 29445 wwlks 29864 wwlksn 29866 clwwlk 30011 clwwlkn 30054 clwwlknonmpo 30117 vafval 30631 bafval 30632 smfval 30633 vsfval 30661 erlval 33244 fracval 33285 fracbas 33286 resvsca 33335 resvlemOLD 33337 prclisacycgr 35135 mvtval 35484 mexval 35486 mexval2 35487 mdvval 35488 mrsubfval 35492 msubfval 35508 elmsubrn 35512 mvhfval 35517 mpstval 35519 msrfval 35521 mstaval 35528 mclsrcl 35545 mppsval 35556 mthmval 35559 fvsingle 35901 funpartfv 35926 fullfunfv 35928 rankeq1o 36152 atbase 39270 llnbase 39491 lplnbase 39516 lvolbase 39560 lhpbase 39980 mzpmfp 42734 kelac1 43051 mendbas 43168 mendplusgfval 43169 mendmulrfval 43171 mendvscafval 43174 brfvimex 44015 clsneibex 44091 neicvgbex 44101 sprssspr 47405 sprsymrelfvlem 47414 prprelprb 47441 prprspr2 47442 upwlkbprop 47981 ipolub00 48781 |
Copyright terms: Public domain | W3C validator |