| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is the empty set. See fvprcALT 6824 for a proof that uses ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6821 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
| 2 | tz6.12-2 6818 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 ∅c0 4282 class class class wbr 5095 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: rnfvprc 6825 dffv3 6827 fvrn0 6859 ndmfv 6863 fv2prc 6873 csbfv 6878 dffv2 6926 brfvopabrbr 6935 fvmpti 6937 fvmptnf 6960 fvmptrabfv 6970 fvunsn 7122 fvmptopab 7410 brfvopab 7412 1stval 7932 2ndval 7933 fipwuni 9321 fipwss 9324 tctr 9639 ranklim 9748 rankuni 9767 alephsing 10178 itunisuc 10321 itunitc 10323 tskmcl 10743 hashfn 14289 s1prc 14519 trclfvg 14929 trclfvcotrg 14930 dfrtrclrec2 14972 rtrclreclem4 14975 dfrtrcl2 14976 strfvss 17105 strfvi 17108 fveqprc 17109 oveqprc 17110 elbasfv 17133 ressbas 17154 firest 17343 topnval 17345 homffval 17604 comfffval 17612 oppchomfval 17628 xpcbas 18092 oduval 18202 oduleval 18203 lubfun 18264 glbfun 18277 odujoin 18320 odumeet 18322 oduclatb 18421 ipopos 18450 isipodrs 18451 plusffval 18562 grpidval 18577 gsum0 18600 ismnd 18653 frmdplusg 18770 frmd0 18776 efmndbas 18787 efmndbasabf 18788 efmndplusg 18796 dfgrp2e 18884 grpinvfval 18899 grpinvfvalALT 18900 grpinvfvi 18903 grpsubfval 18904 grpsubfvalALT 18905 mulgfval 18990 mulgfvalALT 18991 mulgfvi 18994 cntrval 19239 cntzval 19241 cntzrcl 19247 oppgval 19267 oppgplusfval 19268 symgval 19291 lactghmga 19325 psgnfval 19420 odfval 19452 odfvalALT 19453 oppglsm 19562 efgval 19637 mgpval 20069 mgpplusg 20070 ringidval 20109 opprval 20265 opprmulfval 20266 dvdsrval 20288 invrfval 20316 dvrfval 20329 rrgval 20621 staffval 20765 scaffval 20822 islss 20876 sralem 21119 sravsca 21124 sraip 21125 rlmval 21134 rlmsca2 21142 2idlval 21197 zrhval 21453 zlmvsca 21467 chrval 21469 evpmss 21532 ipffval 21594 ocvval 21613 elocv 21614 thlbas 21642 thlle 21643 thloc 21645 pjfval 21652 asclfval 21825 psrbas 21880 psr1val 22117 vr1val 22123 ply1val 22125 ply1basfvi 22172 ply1plusgfvi 22173 psr1sca2 22182 ply1sca2 22185 ply1ascl 22191 evl1fval 22263 evl1fval1 22266 toponsspwpw 22857 istps 22869 tgdif0 22927 indislem 22935 txindislem 23568 fsubbas 23802 filuni 23820 ussval 24194 isusp 24196 nmfval 24523 tngds 24583 tcphval 25165 deg1fval 26032 deg1fvi 26037 uc1pval 26092 mon1pval 26094 sltval2 27615 sltintdifex 27620 vtxval 28999 iedgval 29000 vtxvalprc 29044 iedgvalprc 29045 edgval 29048 prcliscplgr 29413 wwlks 29834 wwlksn 29836 clwwlk 29984 clwwlkn 30027 clwwlknonmpo 30090 vafval 30604 bafval 30605 smfval 30606 vsfval 30634 erlval 33268 fracval 33314 fracbas 33315 resvsca 33341 prclisacycgr 35267 mvtval 35616 mexval 35618 mexval2 35619 mdvval 35620 mrsubfval 35624 msubfval 35640 elmsubrn 35644 mvhfval 35649 mpstval 35651 msrfval 35653 mstaval 35660 mclsrcl 35677 mppsval 35688 mthmval 35691 fvsingle 36034 funpartfv 36061 fullfunfv 36063 rankeq1o 36287 atbase 39461 llnbase 39681 lplnbase 39706 lvolbase 39750 lhpbase 40170 mzpmfp 42904 kelac1 43220 mendbas 43337 mendplusgfval 43338 mendmulrfval 43340 mendvscafval 43343 brfvimex 44183 clsneibex 44259 neicvgbex 44269 sprssspr 47643 sprsymrelfvlem 47652 prprelprb 47679 prprspr2 47680 upwlkbprop 48300 ipolub00 49154 resccat 49235 oppcup3 49370 initopropdlem 49401 termopropdlem 49402 zeroopropdlem 49403 catcrcl 49556 |
| Copyright terms: Public domain | W3C validator |