Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. See fvprcALT 6832 for a proof that uses ax-pow 5318 instead of ax-pr 5382. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5318. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6829 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
2 | tz6.12-2 6827 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 ∃!weu 2567 Vcvv 3443 ∅c0 4280 class class class wbr 5103 ‘cfv 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-nul 5261 ax-pr 5382 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-iota 6445 df-fv 6501 |
This theorem is referenced by: rnfvprc 6833 dffv3 6835 fvrn0 6869 ndmfv 6874 fv2prc 6884 csbfv 6889 dffv2 6933 brfvopabrbr 6942 fvmpti 6944 fvmptnf 6967 fvmptrabfv 6976 fvunsn 7121 fvmptopab 7405 fvmptopabOLD 7406 brfvopab 7408 1stval 7915 2ndval 7916 fipwuni 9320 fipwss 9323 tctr 9634 ranklim 9738 rankuni 9757 alephsing 10170 itunisuc 10313 itunitc 10315 tskmcl 10735 hashfn 14229 s1prc 14446 trclfvg 14860 trclfvcotrg 14861 dfrtrclrec2 14903 rtrclreclem4 14906 dfrtrcl2 14907 strfvss 17019 strfvi 17022 fveqprc 17023 oveqprc 17024 setsnidOLD 17042 elbasfv 17049 ressbas 17078 ressbasOLD 17079 resslemOLD 17083 firest 17274 topnval 17276 homffval 17530 comfffval 17538 oppchomfval 17554 oppchomfvalOLD 17555 oppcbasOLD 17560 xpcbas 18026 oduval 18137 oduleval 18138 lubfun 18201 glbfun 18214 odujoin 18257 odumeet 18259 oduclatb 18356 ipopos 18385 isipodrs 18386 plusffval 18463 grpidval 18476 gsum0 18499 ismnd 18519 frmdplusg 18624 frmd0 18630 efmndbas 18641 efmndbasabf 18642 efmndplusg 18650 dfgrp2e 18736 grpinvfval 18749 grpinvfvalALT 18750 grpinvfvi 18753 grpsubfval 18754 grpsubfvalALT 18755 mulgfval 18833 mulgfvalALT 18834 mulgfvi 18837 cntrval 19058 cntzval 19060 cntzrcl 19066 oppgval 19084 oppgplusfval 19085 symgval 19109 lactghmga 19146 psgnfval 19241 odfval 19273 odfvalALT 19274 oppglsm 19383 efgval 19458 mgpval 19858 mgpplusg 19859 ringidval 19874 opprval 20003 opprmulfval 20004 dvdsrval 20027 invrfval 20055 dvrfval 20066 staffval 20259 scaffval 20293 islss 20348 sralem 20591 sralemOLD 20592 sravsca 20601 sravscaOLD 20602 sraip 20603 rlmval 20613 rlmsca2 20623 2idlval 20656 rrgval 20710 zrhval 20861 zlmlemOLD 20871 zlmvsca 20879 chrval 20881 evpmss 20943 ipffval 21005 ocvval 21024 elocv 21025 thlbas 21053 thlbasOLD 21054 thlle 21055 thlleOLD 21056 thloc 21058 pjfval 21065 asclfval 21235 psrbas 21299 psr1val 21509 vr1val 21515 ply1val 21517 ply1basfvi 21564 ply1plusgfvi 21565 psr1sca2 21574 ply1sca2 21577 ply1ascl 21581 evl1fval 21646 evl1fval1 21649 toponsspwpw 22223 istps 22235 tgdif0 22294 indislem 22302 txindislem 22936 fsubbas 23170 filuni 23188 ussval 23563 isusp 23565 nmfval 23896 tnglemOLD 23949 tngds 23963 tngdsOLD 23964 tcphval 24534 deg1fval 25397 deg1fvi 25402 uc1pval 25456 mon1pval 25458 sltval2 26956 sltintdifex 26961 ttglemOLD 27649 vtxval 27780 iedgval 27781 vtxvalprc 27825 iedgvalprc 27826 edgval 27829 prcliscplgr 28191 wwlks 28609 wwlksn 28611 clwwlk 28756 clwwlkn 28799 clwwlknonmpo 28862 vafval 29374 bafval 29375 smfval 29376 vsfval 29404 resvsca 31947 resvlemOLD 31949 prclisacycgr 33557 mvtval 33906 mexval 33908 mexval2 33909 mdvval 33910 mrsubfval 33914 msubfval 33930 elmsubrn 33934 mvhfval 33939 mpstval 33941 msrfval 33943 mstaval 33950 mclsrcl 33967 mppsval 33978 mthmval 33981 fvsingle 34443 funpartfv 34468 fullfunfv 34470 rankeq1o 34694 atbase 37689 llnbase 37910 lplnbase 37935 lvolbase 37979 lhpbase 38399 mzpmfp 40979 kelac1 41299 mendbas 41420 mendplusgfval 41421 mendmulrfval 41423 mendvscafval 41426 brfvimex 42209 clsneibex 42285 neicvgbex 42295 sprssspr 45574 sprsymrelfvlem 45583 prprelprb 45610 prprspr2 45611 upwlkbprop 45941 ipolub00 46919 |
Copyright terms: Public domain | W3C validator |