| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is the empty set. See fvprcALT 6833 for a proof that uses ax-pow 5315 instead of ax-pr 5382. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5315. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6830 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
| 2 | tz6.12-2 6828 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 Vcvv 3444 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: rnfvprc 6834 dffv3 6836 fvrn0 6870 ndmfv 6875 fv2prc 6885 csbfv 6890 dffv2 6938 brfvopabrbr 6947 fvmpti 6949 fvmptnf 6972 fvmptrabfv 6982 fvunsn 7135 fvmptopab 7424 brfvopab 7426 1stval 7949 2ndval 7950 fipwuni 9353 fipwss 9356 tctr 9669 ranklim 9773 rankuni 9792 alephsing 10205 itunisuc 10348 itunitc 10350 tskmcl 10770 hashfn 14316 s1prc 14545 trclfvg 14957 trclfvcotrg 14958 dfrtrclrec2 15000 rtrclreclem4 15003 dfrtrcl2 15004 strfvss 17133 strfvi 17136 fveqprc 17137 oveqprc 17138 elbasfv 17161 ressbas 17182 firest 17371 topnval 17373 homffval 17627 comfffval 17635 oppchomfval 17651 xpcbas 18115 oduval 18225 oduleval 18226 lubfun 18287 glbfun 18300 odujoin 18343 odumeet 18345 oduclatb 18442 ipopos 18471 isipodrs 18472 plusffval 18549 grpidval 18564 gsum0 18587 ismnd 18640 frmdplusg 18757 frmd0 18763 efmndbas 18774 efmndbasabf 18775 efmndplusg 18783 dfgrp2e 18871 grpinvfval 18886 grpinvfvalALT 18887 grpinvfvi 18890 grpsubfval 18891 grpsubfvalALT 18892 mulgfval 18977 mulgfvalALT 18978 mulgfvi 18981 cntrval 19227 cntzval 19229 cntzrcl 19235 oppgval 19255 oppgplusfval 19256 symgval 19277 lactghmga 19311 psgnfval 19406 odfval 19438 odfvalALT 19439 oppglsm 19548 efgval 19623 mgpval 20028 mgpplusg 20029 ringidval 20068 opprval 20223 opprmulfval 20224 dvdsrval 20246 invrfval 20274 dvrfval 20287 rrgval 20582 staffval 20726 scaffval 20762 islss 20816 sralem 21059 sravsca 21064 sraip 21065 rlmval 21074 rlmsca2 21082 2idlval 21137 zrhval 21393 zlmvsca 21407 chrval 21409 evpmss 21471 ipffval 21533 ocvval 21552 elocv 21553 thlbas 21581 thlle 21582 thloc 21584 pjfval 21591 asclfval 21764 psrbas 21818 psr1val 22046 vr1val 22052 ply1val 22054 ply1basfvi 22101 ply1plusgfvi 22102 psr1sca2 22111 ply1sca2 22114 ply1ascl 22120 evl1fval 22191 evl1fval1 22194 toponsspwpw 22785 istps 22797 tgdif0 22855 indislem 22863 txindislem 23496 fsubbas 23730 filuni 23748 ussval 24123 isusp 24125 nmfval 24452 tngds 24512 tcphval 25094 deg1fval 25961 deg1fvi 25966 uc1pval 26021 mon1pval 26023 sltval2 27544 sltintdifex 27549 vtxval 28903 iedgval 28904 vtxvalprc 28948 iedgvalprc 28949 edgval 28952 prcliscplgr 29317 wwlks 29738 wwlksn 29740 clwwlk 29885 clwwlkn 29928 clwwlknonmpo 29991 vafval 30505 bafval 30506 smfval 30507 vsfval 30535 erlval 33182 fracval 33227 fracbas 33228 resvsca 33277 prclisacycgr 35111 mvtval 35460 mexval 35462 mexval2 35463 mdvval 35464 mrsubfval 35468 msubfval 35484 elmsubrn 35488 mvhfval 35493 mpstval 35495 msrfval 35497 mstaval 35504 mclsrcl 35521 mppsval 35532 mthmval 35535 fvsingle 35881 funpartfv 35906 fullfunfv 35908 rankeq1o 36132 atbase 39255 llnbase 39476 lplnbase 39501 lvolbase 39545 lhpbase 39965 mzpmfp 42708 kelac1 43025 mendbas 43142 mendplusgfval 43143 mendmulrfval 43145 mendvscafval 43148 brfvimex 43988 clsneibex 44064 neicvgbex 44074 sprssspr 47455 sprsymrelfvlem 47464 prprelprb 47491 prprspr2 47492 upwlkbprop 48099 ipolub00 48954 resccat 49036 oppcup3 49171 initopropdlem 49202 termopropdlem 49203 zeroopropdlem 49204 catcrcl 49357 |
| Copyright terms: Public domain | W3C validator |