| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is the empty set. See fvprcALT 6810 for a proof that uses ax-pow 5298 instead of ax-pr 5365. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5298. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6807 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
| 2 | tz6.12-2 6804 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: rnfvprc 6811 dffv3 6813 fvrn0 6845 ndmfv 6849 fv2prc 6859 csbfv 6864 dffv2 6912 brfvopabrbr 6921 fvmpti 6923 fvmptnf 6946 fvmptrabfv 6956 fvunsn 7108 fvmptopab 7396 brfvopab 7398 1stval 7918 2ndval 7919 fipwuni 9305 fipwss 9308 tctr 9623 ranklim 9732 rankuni 9751 alephsing 10162 itunisuc 10305 itunitc 10307 tskmcl 10727 hashfn 14277 s1prc 14507 trclfvg 14917 trclfvcotrg 14918 dfrtrclrec2 14960 rtrclreclem4 14963 dfrtrcl2 14964 strfvss 17093 strfvi 17096 fveqprc 17097 oveqprc 17098 elbasfv 17121 ressbas 17142 firest 17331 topnval 17333 homffval 17591 comfffval 17599 oppchomfval 17615 xpcbas 18079 oduval 18189 oduleval 18190 lubfun 18251 glbfun 18264 odujoin 18307 odumeet 18309 oduclatb 18408 ipopos 18437 isipodrs 18438 plusffval 18549 grpidval 18564 gsum0 18587 ismnd 18640 frmdplusg 18757 frmd0 18763 efmndbas 18774 efmndbasabf 18775 efmndplusg 18783 dfgrp2e 18871 grpinvfval 18886 grpinvfvalALT 18887 grpinvfvi 18890 grpsubfval 18891 grpsubfvalALT 18892 mulgfval 18977 mulgfvalALT 18978 mulgfvi 18981 cntrval 19226 cntzval 19228 cntzrcl 19234 oppgval 19254 oppgplusfval 19255 symgval 19278 lactghmga 19312 psgnfval 19407 odfval 19439 odfvalALT 19440 oppglsm 19549 efgval 19624 mgpval 20056 mgpplusg 20057 ringidval 20096 opprval 20251 opprmulfval 20252 dvdsrval 20274 invrfval 20302 dvrfval 20315 rrgval 20607 staffval 20751 scaffval 20808 islss 20862 sralem 21105 sravsca 21110 sraip 21111 rlmval 21120 rlmsca2 21128 2idlval 21183 zrhval 21439 zlmvsca 21453 chrval 21455 evpmss 21518 ipffval 21580 ocvval 21599 elocv 21600 thlbas 21628 thlle 21629 thloc 21631 pjfval 21638 asclfval 21811 psrbas 21865 psr1val 22093 vr1val 22099 ply1val 22101 ply1basfvi 22148 ply1plusgfvi 22149 psr1sca2 22158 ply1sca2 22161 ply1ascl 22167 evl1fval 22238 evl1fval1 22241 toponsspwpw 22832 istps 22844 tgdif0 22902 indislem 22910 txindislem 23543 fsubbas 23777 filuni 23795 ussval 24169 isusp 24171 nmfval 24498 tngds 24558 tcphval 25140 deg1fval 26007 deg1fvi 26012 uc1pval 26067 mon1pval 26069 sltval2 27590 sltintdifex 27595 vtxval 28973 iedgval 28974 vtxvalprc 29018 iedgvalprc 29019 edgval 29022 prcliscplgr 29387 wwlks 29808 wwlksn 29810 clwwlk 29955 clwwlkn 29998 clwwlknonmpo 30061 vafval 30575 bafval 30576 smfval 30577 vsfval 30605 erlval 33217 fracval 33262 fracbas 33263 resvsca 33289 prclisacycgr 35187 mvtval 35536 mexval 35538 mexval2 35539 mdvval 35540 mrsubfval 35544 msubfval 35560 elmsubrn 35564 mvhfval 35569 mpstval 35571 msrfval 35573 mstaval 35580 mclsrcl 35597 mppsval 35608 mthmval 35611 fvsingle 35954 funpartfv 35979 fullfunfv 35981 rankeq1o 36205 atbase 39328 llnbase 39548 lplnbase 39573 lvolbase 39617 lhpbase 40037 mzpmfp 42780 kelac1 43096 mendbas 43213 mendplusgfval 43214 mendmulrfval 43216 mendvscafval 43219 brfvimex 44059 clsneibex 44135 neicvgbex 44145 sprssspr 47512 sprsymrelfvlem 47521 prprelprb 47548 prprspr2 47549 upwlkbprop 48169 ipolub00 49024 resccat 49106 oppcup3 49241 initopropdlem 49272 termopropdlem 49273 zeroopropdlem 49274 catcrcl 49427 |
| Copyright terms: Public domain | W3C validator |