![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. See fvprcALT 6913 for a proof that uses ax-pow 5383 instead of ax-pr 5447. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6910 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
2 | tz6.12-2 6908 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 Vcvv 3488 ∅c0 4352 class class class wbr 5166 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: rnfvprc 6914 dffv3 6916 fvrn0 6950 ndmfv 6955 fv2prc 6965 csbfv 6970 dffv2 7017 brfvopabrbr 7026 fvmpti 7028 fvmptnf 7051 fvmptrabfv 7061 fvunsn 7213 fvmptopab 7504 fvmptopabOLD 7505 brfvopab 7507 1stval 8032 2ndval 8033 fipwuni 9495 fipwss 9498 tctr 9809 ranklim 9913 rankuni 9932 alephsing 10345 itunisuc 10488 itunitc 10490 tskmcl 10910 hashfn 14424 s1prc 14652 trclfvg 15064 trclfvcotrg 15065 dfrtrclrec2 15107 rtrclreclem4 15110 dfrtrcl2 15111 strfvss 17234 strfvi 17237 fveqprc 17238 oveqprc 17239 setsnidOLD 17257 elbasfv 17264 ressbas 17293 ressbasOLD 17294 resslemOLD 17301 firest 17492 topnval 17494 homffval 17748 comfffval 17756 oppchomfval 17772 oppchomfvalOLD 17773 oppcbasOLD 17778 xpcbas 18247 oduval 18358 oduleval 18359 lubfun 18422 glbfun 18435 odujoin 18478 odumeet 18480 oduclatb 18577 ipopos 18606 isipodrs 18607 plusffval 18684 grpidval 18699 gsum0 18722 ismnd 18775 frmdplusg 18889 frmd0 18895 efmndbas 18906 efmndbasabf 18907 efmndplusg 18915 dfgrp2e 19003 grpinvfval 19018 grpinvfvalALT 19019 grpinvfvi 19022 grpsubfval 19023 grpsubfvalALT 19024 mulgfval 19109 mulgfvalALT 19110 mulgfvi 19113 cntrval 19359 cntzval 19361 cntzrcl 19367 oppgval 19387 oppgplusfval 19388 symgval 19412 lactghmga 19447 psgnfval 19542 odfval 19574 odfvalALT 19575 oppglsm 19684 efgval 19759 mgpval 20164 mgpplusg 20165 ringidval 20210 opprval 20361 opprmulfval 20362 dvdsrval 20387 invrfval 20415 dvrfval 20428 rrgval 20719 staffval 20864 scaffval 20900 islss 20955 sralem 21198 sralemOLD 21199 sravsca 21208 sravscaOLD 21209 sraip 21210 rlmval 21221 rlmsca2 21229 2idlval 21284 zrhval 21541 zlmlemOLD 21551 zlmvsca 21559 chrval 21561 evpmss 21627 ipffval 21689 ocvval 21708 elocv 21709 thlbas 21737 thlbasOLD 21738 thlle 21739 thlleOLD 21740 thloc 21742 pjfval 21749 asclfval 21922 psrbas 21976 psr1val 22208 vr1val 22214 ply1val 22216 ply1basfvi 22263 ply1plusgfvi 22264 psr1sca2 22273 ply1sca2 22276 ply1ascl 22282 evl1fval 22353 evl1fval1 22356 toponsspwpw 22949 istps 22961 tgdif0 23020 indislem 23028 txindislem 23662 fsubbas 23896 filuni 23914 ussval 24289 isusp 24291 nmfval 24622 tnglemOLD 24675 tngds 24689 tngdsOLD 24690 tcphval 25271 deg1fval 26139 deg1fvi 26144 uc1pval 26199 mon1pval 26201 sltval2 27719 sltintdifex 27724 ttglemOLD 28904 vtxval 29035 iedgval 29036 vtxvalprc 29080 iedgvalprc 29081 edgval 29084 prcliscplgr 29449 wwlks 29868 wwlksn 29870 clwwlk 30015 clwwlkn 30058 clwwlknonmpo 30121 vafval 30635 bafval 30636 smfval 30637 vsfval 30665 erlval 33230 fracval 33271 fracbas 33272 resvsca 33321 resvlemOLD 33323 prclisacycgr 35119 mvtval 35468 mexval 35470 mexval2 35471 mdvval 35472 mrsubfval 35476 msubfval 35492 elmsubrn 35496 mvhfval 35501 mpstval 35503 msrfval 35505 mstaval 35512 mclsrcl 35529 mppsval 35540 mthmval 35543 fvsingle 35884 funpartfv 35909 fullfunfv 35911 rankeq1o 36135 atbase 39245 llnbase 39466 lplnbase 39491 lvolbase 39535 lhpbase 39955 mzpmfp 42703 kelac1 43020 mendbas 43141 mendplusgfval 43142 mendmulrfval 43144 mendvscafval 43147 brfvimex 43988 clsneibex 44064 neicvgbex 44074 sprssspr 47355 sprsymrelfvlem 47364 prprelprb 47391 prprspr2 47392 upwlkbprop 47861 ipolub00 48665 |
Copyright terms: Public domain | W3C validator |