| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version | ||
| Description: A function's value at a proper class is the empty set. See fvprcALT 6851 for a proof that uses ax-pow 5320 instead of ax-pr 5387. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5320. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| Ref | Expression |
|---|---|
| fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brprcneu 6848 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
| 2 | tz6.12-2 6846 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 Vcvv 3447 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: rnfvprc 6852 dffv3 6854 fvrn0 6888 ndmfv 6893 fv2prc 6903 csbfv 6908 dffv2 6956 brfvopabrbr 6965 fvmpti 6967 fvmptnf 6990 fvmptrabfv 7000 fvunsn 7153 fvmptopab 7443 fvmptopabOLD 7444 brfvopab 7446 1stval 7970 2ndval 7971 fipwuni 9377 fipwss 9380 tctr 9693 ranklim 9797 rankuni 9816 alephsing 10229 itunisuc 10372 itunitc 10374 tskmcl 10794 hashfn 14340 s1prc 14569 trclfvg 14981 trclfvcotrg 14982 dfrtrclrec2 15024 rtrclreclem4 15027 dfrtrcl2 15028 strfvss 17157 strfvi 17160 fveqprc 17161 oveqprc 17162 elbasfv 17185 ressbas 17206 firest 17395 topnval 17397 homffval 17651 comfffval 17659 oppchomfval 17675 xpcbas 18139 oduval 18249 oduleval 18250 lubfun 18311 glbfun 18324 odujoin 18367 odumeet 18369 oduclatb 18466 ipopos 18495 isipodrs 18496 plusffval 18573 grpidval 18588 gsum0 18611 ismnd 18664 frmdplusg 18781 frmd0 18787 efmndbas 18798 efmndbasabf 18799 efmndplusg 18807 dfgrp2e 18895 grpinvfval 18910 grpinvfvalALT 18911 grpinvfvi 18914 grpsubfval 18915 grpsubfvalALT 18916 mulgfval 19001 mulgfvalALT 19002 mulgfvi 19005 cntrval 19251 cntzval 19253 cntzrcl 19259 oppgval 19279 oppgplusfval 19280 symgval 19301 lactghmga 19335 psgnfval 19430 odfval 19462 odfvalALT 19463 oppglsm 19572 efgval 19647 mgpval 20052 mgpplusg 20053 ringidval 20092 opprval 20247 opprmulfval 20248 dvdsrval 20270 invrfval 20298 dvrfval 20311 rrgval 20606 staffval 20750 scaffval 20786 islss 20840 sralem 21083 sravsca 21088 sraip 21089 rlmval 21098 rlmsca2 21106 2idlval 21161 zrhval 21417 zlmvsca 21431 chrval 21433 evpmss 21495 ipffval 21557 ocvval 21576 elocv 21577 thlbas 21605 thlle 21606 thloc 21608 pjfval 21615 asclfval 21788 psrbas 21842 psr1val 22070 vr1val 22076 ply1val 22078 ply1basfvi 22125 ply1plusgfvi 22126 psr1sca2 22135 ply1sca2 22138 ply1ascl 22144 evl1fval 22215 evl1fval1 22218 toponsspwpw 22809 istps 22821 tgdif0 22879 indislem 22887 txindislem 23520 fsubbas 23754 filuni 23772 ussval 24147 isusp 24149 nmfval 24476 tngds 24536 tcphval 25118 deg1fval 25985 deg1fvi 25990 uc1pval 26045 mon1pval 26047 sltval2 27568 sltintdifex 27573 vtxval 28927 iedgval 28928 vtxvalprc 28972 iedgvalprc 28973 edgval 28976 prcliscplgr 29341 wwlks 29765 wwlksn 29767 clwwlk 29912 clwwlkn 29955 clwwlknonmpo 30018 vafval 30532 bafval 30533 smfval 30534 vsfval 30562 erlval 33209 fracval 33254 fracbas 33255 resvsca 33304 prclisacycgr 35138 mvtval 35487 mexval 35489 mexval2 35490 mdvval 35491 mrsubfval 35495 msubfval 35511 elmsubrn 35515 mvhfval 35520 mpstval 35522 msrfval 35524 mstaval 35531 mclsrcl 35548 mppsval 35559 mthmval 35562 fvsingle 35908 funpartfv 35933 fullfunfv 35935 rankeq1o 36159 atbase 39282 llnbase 39503 lplnbase 39528 lvolbase 39572 lhpbase 39992 mzpmfp 42735 kelac1 43052 mendbas 43169 mendplusgfval 43170 mendmulrfval 43172 mendvscafval 43175 brfvimex 44015 clsneibex 44091 neicvgbex 44101 sprssspr 47482 sprsymrelfvlem 47491 prprelprb 47518 prprspr2 47519 upwlkbprop 48126 ipolub00 48981 resccat 49063 oppcup3 49198 initopropdlem 49229 termopropdlem 49230 zeroopropdlem 49231 catcrcl 49384 |
| Copyright terms: Public domain | W3C validator |