MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancom1s Structured version   Visualization version   GIF version

Theorem ancom1s 653
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an32s.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
ancom1s (((𝜓𝜑) ∧ 𝜒) → 𝜃)

Proof of Theorem ancom1s
StepHypRef Expression
1 pm3.22 459 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 an32s.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylan 580 1 (((𝜓𝜑) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  odi  8500  sornom  10175  leltadd  11608  divmul13  11831  absmax  15239  fzomaxdif  15253  dmatsgrp  22415  comppfsc  23448  iocopnst  24865  mumul  27119  lgsdir2  27269  branmfn  32087  chirredlem2  32373  chirredlem4  32375  icoreclin  37422  relowlssretop  37428  pibt2  37482  frinfm  37795  fzmul  37801  fdc  37805  rpnnen3  43149
  Copyright terms: Public domain W3C validator