| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom1s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom1s | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: odi 8504 sornom 10190 leltadd 11622 divmul13 11845 absmax 15255 fzomaxdif 15269 dmatsgrp 22402 comppfsc 23435 iocopnst 24853 mumul 27107 lgsdir2 27257 branmfn 32067 chirredlem2 32353 chirredlem4 32355 icoreclin 37330 relowlssretop 37336 pibt2 37390 frinfm 37714 fzmul 37720 fdc 37724 rpnnen3 43005 |
| Copyright terms: Public domain | W3C validator |