![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom1s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
ancom1s | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 459 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 579 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: odi 8635 sornom 10346 leltadd 11774 divmul13 11997 absmax 15378 fzomaxdif 15392 dmatsgrp 22526 comppfsc 23561 iocopnst 24989 mumul 27242 lgsdir2 27392 branmfn 32137 chirredlem2 32423 chirredlem4 32425 icoreclin 37323 relowlssretop 37329 pibt2 37383 frinfm 37695 fzmul 37701 fdc 37705 rpnnen3 42989 |
Copyright terms: Public domain | W3C validator |