| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom1s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom1s | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: odi 8494 sornom 10165 leltadd 11598 divmul13 11821 absmax 15234 fzomaxdif 15248 dmatsgrp 22412 comppfsc 23445 iocopnst 24862 mumul 27116 lgsdir2 27266 branmfn 32080 chirredlem2 32366 chirredlem4 32368 icoreclin 37390 relowlssretop 37396 pibt2 37450 frinfm 37774 fzmul 37780 fdc 37784 rpnnen3 43064 |
| Copyright terms: Public domain | W3C validator |