| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancom1s | Structured version Visualization version GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| ancom1s | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 459 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜑 ∧ 𝜓)) | |
| 2 | an32s.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: odi 8596 sornom 10296 leltadd 11726 divmul13 11949 absmax 15353 fzomaxdif 15367 dmatsgrp 22442 comppfsc 23475 iocopnst 24893 mumul 27148 lgsdir2 27298 branmfn 32091 chirredlem2 32377 chirredlem4 32379 icoreclin 37380 relowlssretop 37386 pibt2 37440 frinfm 37764 fzmul 37770 fdc 37774 rpnnen3 43023 |
| Copyright terms: Public domain | W3C validator |