MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancom1s Structured version   Visualization version   GIF version

Theorem ancom1s 653
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an32s.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
ancom1s (((𝜓𝜑) ∧ 𝜒) → 𝜃)

Proof of Theorem ancom1s
StepHypRef Expression
1 pm3.22 459 . 2 ((𝜓𝜑) → (𝜑𝜓))
2 an32s.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylan 580 1 (((𝜓𝜑) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  odi  8543  sornom  10230  leltadd  11662  divmul13  11885  absmax  15296  fzomaxdif  15310  dmatsgrp  22386  comppfsc  23419  iocopnst  24837  mumul  27091  lgsdir2  27241  branmfn  32034  chirredlem2  32320  chirredlem4  32322  icoreclin  37345  relowlssretop  37351  pibt2  37405  frinfm  37729  fzmul  37735  fdc  37739  rpnnen3  43021
  Copyright terms: Public domain W3C validator