MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Visualization version   GIF version

Theorem iocopnst 24303
Description: A half-open interval ending at 𝐵 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
iocopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))

Proof of Theorem iocopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 24129 . . . . 5 (𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,))
2 simp1 1136 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ))
4 simp2 1137 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣)
54a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣))
6 ltp1 11995 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
76adantr 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝐵 < (𝐵 + 1))
8 peano2re 11328 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
9 lelttr 11245 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1093expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1110ancom1s 651 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1211ancomsd 466 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
138, 12mpidan 687 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
147, 13mpand 693 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣𝐵𝑣 < (𝐵 + 1)))
1514impr 455 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝑣𝐵)) → 𝑣 < (𝐵 + 1))
16153adantr2 1170 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝑣 < (𝐵 + 1))
1716ex 413 . . . . . . . . . . 11 (𝐵 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
1817ad2antlr 725 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
193, 5, 183jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
20 rexr 11201 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
21 elico2 13328 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2220, 21sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2322biimpa 477 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
24 lelttr 11245 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴 < 𝑣))
25 ltle 11243 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
26253adant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
2724, 26syld 47 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
28273expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
2928imp 407 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐴𝐶𝐶 < 𝑣)) → 𝐴𝑣)
3029an4s 658 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣)) → 𝐴𝑣)
31303adantr3 1171 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝐴𝑣)
3231ex 413 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3332anasss 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
34333adantr3 1171 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3534adantlr 713 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3623, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
37 simp3 1138 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵)
3837a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵))
393, 36, 383jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
4019, 39jcad 513 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
41 simpl1 1191 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
42 simpl2 1192 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐶 < 𝑣)
43 simpr3 1196 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣𝐵)
4441, 42, 433jca 1128 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵))
4540, 44impbid1 224 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
4623simp1d 1142 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4746rexrd 11205 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
48 simplr 767 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ)
49 elioc2 13327 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
5047, 48, 49syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
51 elin 3926 . . . . . . . 8 (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
528rexrd 11205 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ*)
5352ad2antlr 725 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐵 + 1) ∈ ℝ*)
54 elioo2 13305 . . . . . . . . . 10 ((𝐶 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ*) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
5547, 53, 54syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
56 elicc2 13329 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5756adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5855, 57anbi12d 631 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5951, 58bitrid 282 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
6045, 50, 593bitr4d 310 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ 𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))))
6160eqrdv 2734 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
62 ineq1 4165 . . . . . 6 (𝑣 = (𝐶(,)(𝐵 + 1)) → (𝑣 ∩ (𝐴[,]𝐵)) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
6362rspceeqv 3595 . . . . 5 (((𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,)) ∧ (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
641, 61, 63sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
65 retop 24125 . . . . 5 (topGen‘ran (,)) ∈ Top
66 ovex 7390 . . . . 5 (𝐴[,]𝐵) ∈ V
67 elrest 17309 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵))))
6865, 66, 67mp2an 690 . . . 4 ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
6964, 68sylibr 233 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
70 iccssre 13346 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
7170adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
72 eqid 2736 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
73 iocopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7472, 73resubmet 24165 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7571, 74syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7669, 75eleqtrrd 2841 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ 𝐽)
7776ex 413 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  cin 3909  wss 3910   class class class wbr 5105   × cxp 5631  ran crn 5634  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  cmin 11385  (,)cioo 13264  (,]cioc 13265  [,)cico 13266  [,]cicc 13267  abscabs 15119  t crest 17302  topGenctg 17319  MetOpencmopn 20786  Topctop 22242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator