MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Visualization version   GIF version

Theorem iocopnst 24385
Description: A half-open interval ending at 𝐵 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
iocopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))

Proof of Theorem iocopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 24211 . . . . 5 (𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,))
2 simp1 1136 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ))
4 simp2 1137 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣)
54a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣))
6 ltp1 12036 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
76adantr 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝐵 < (𝐵 + 1))
8 peano2re 11369 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
9 lelttr 11286 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1093expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1110ancom1s 651 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1211ancomsd 466 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
138, 12mpidan 687 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
147, 13mpand 693 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣𝐵𝑣 < (𝐵 + 1)))
1514impr 455 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝑣𝐵)) → 𝑣 < (𝐵 + 1))
16153adantr2 1170 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝑣 < (𝐵 + 1))
1716ex 413 . . . . . . . . . . 11 (𝐵 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
1817ad2antlr 725 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
193, 5, 183jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
20 rexr 11242 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
21 elico2 13370 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2220, 21sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2322biimpa 477 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
24 lelttr 11286 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴 < 𝑣))
25 ltle 11284 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
26253adant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
2724, 26syld 47 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
28273expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
2928imp 407 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐴𝐶𝐶 < 𝑣)) → 𝐴𝑣)
3029an4s 658 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣)) → 𝐴𝑣)
31303adantr3 1171 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝐴𝑣)
3231ex 413 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3332anasss 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
34333adantr3 1171 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3534adantlr 713 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3623, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
37 simp3 1138 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵)
3837a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵))
393, 36, 383jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
4019, 39jcad 513 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
41 simpl1 1191 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
42 simpl2 1192 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐶 < 𝑣)
43 simpr3 1196 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣𝐵)
4441, 42, 433jca 1128 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵))
4540, 44impbid1 224 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
4623simp1d 1142 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4746rexrd 11246 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
48 simplr 767 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ)
49 elioc2 13369 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
5047, 48, 49syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
51 elin 3960 . . . . . . . 8 (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
528rexrd 11246 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ*)
5352ad2antlr 725 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐵 + 1) ∈ ℝ*)
54 elioo2 13347 . . . . . . . . . 10 ((𝐶 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ*) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
5547, 53, 54syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
56 elicc2 13371 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5756adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5855, 57anbi12d 631 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5951, 58bitrid 282 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
6045, 50, 593bitr4d 310 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ 𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))))
6160eqrdv 2729 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
62 ineq1 4201 . . . . . 6 (𝑣 = (𝐶(,)(𝐵 + 1)) → (𝑣 ∩ (𝐴[,]𝐵)) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
6362rspceeqv 3629 . . . . 5 (((𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,)) ∧ (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
641, 61, 63sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
65 retop 24207 . . . . 5 (topGen‘ran (,)) ∈ Top
66 ovex 7426 . . . . 5 (𝐴[,]𝐵) ∈ V
67 elrest 17355 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵))))
6865, 66, 67mp2an 690 . . . 4 ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
6964, 68sylibr 233 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
70 iccssre 13388 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
7170adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
72 eqid 2731 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
73 iocopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7472, 73resubmet 24247 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7571, 74syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7669, 75eleqtrrd 2835 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ 𝐽)
7776ex 413 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3069  Vcvv 3473  cin 3943  wss 3944   class class class wbr 5141   × cxp 5667  ran crn 5670  cres 5671  ccom 5673  cfv 6532  (class class class)co 7393  cr 11091  1c1 11093   + caddc 11095  *cxr 11229   < clt 11230  cle 11231  cmin 11426  (,)cioo 13306  (,]cioc 13307  [,)cico 13308  [,]cicc 13309  abscabs 15163  t crest 17348  topGenctg 17365  MetOpencmopn 20868  Topctop 22324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-rest 17350  df-topgen 17371  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-top 22325  df-topon 22342  df-bases 22378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator