MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Visualization version   GIF version

Theorem iocopnst 23478
Description: A half-open interval ending at 𝐵 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
iocopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))

Proof of Theorem iocopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 23308 . . . . 5 (𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,))
2 simp1 1130 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ))
4 simp2 1131 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣)
54a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣))
6 ltp1 11474 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
76adantr 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝐵 < (𝐵 + 1))
8 peano2re 10807 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
9 lelttr 10725 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1093expa 1112 . . . . . . . . . . . . . . . . . 18 (((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1110ancom1s 649 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1211ancomsd 466 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
138, 12mpidan 685 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
147, 13mpand 691 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣𝐵𝑣 < (𝐵 + 1)))
1514impr 455 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝑣𝐵)) → 𝑣 < (𝐵 + 1))
16153adantr2 1164 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝑣 < (𝐵 + 1))
1716ex 413 . . . . . . . . . . 11 (𝐵 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
1817ad2antlr 723 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
193, 5, 183jcad 1123 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
20 rexr 10681 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
21 elico2 12795 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2220, 21sylan2 592 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2322biimpa 477 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
24 lelttr 10725 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴 < 𝑣))
25 ltle 10723 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
26253adant2 1125 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
2724, 26syld 47 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
28273expa 1112 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
2928imp 407 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐴𝐶𝐶 < 𝑣)) → 𝐴𝑣)
3029an4s 656 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣)) → 𝐴𝑣)
31303adantr3 1165 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝐴𝑣)
3231ex 413 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3332anasss 467 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
34333adantr3 1165 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3534adantlr 711 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3623, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
37 simp3 1132 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵)
3837a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵))
393, 36, 383jcad 1123 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
4019, 39jcad 513 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
41 simpl1 1185 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
42 simpl2 1186 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐶 < 𝑣)
43 simpr3 1190 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣𝐵)
4441, 42, 433jca 1122 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵))
4540, 44impbid1 226 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
4623simp1d 1136 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4746rexrd 10685 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
48 simplr 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ)
49 elioc2 12794 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
5047, 48, 49syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
51 elin 4173 . . . . . . . 8 (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
528rexrd 10685 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ*)
5352ad2antlr 723 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐵 + 1) ∈ ℝ*)
54 elioo2 12774 . . . . . . . . . 10 ((𝐶 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ*) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
5547, 53, 54syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
56 elicc2 12796 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5756adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5855, 57anbi12d 630 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5951, 58syl5bb 284 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
6045, 50, 593bitr4d 312 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ 𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))))
6160eqrdv 2824 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
62 ineq1 4185 . . . . . 6 (𝑣 = (𝐶(,)(𝐵 + 1)) → (𝑣 ∩ (𝐴[,]𝐵)) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
6362rspceeqv 3642 . . . . 5 (((𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,)) ∧ (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
641, 61, 63sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
65 retop 23304 . . . . 5 (topGen‘ran (,)) ∈ Top
66 ovex 7183 . . . . 5 (𝐴[,]𝐵) ∈ V
67 elrest 16696 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵))))
6865, 66, 67mp2an 688 . . . 4 ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
6964, 68sylibr 235 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
70 iccssre 12813 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
7170adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
72 eqid 2826 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
73 iocopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7472, 73resubmet 23344 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7571, 74syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7669, 75eleqtrrd 2921 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ 𝐽)
7776ex 413 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wrex 3144  Vcvv 3500  cin 3939  wss 3940   class class class wbr 5063   × cxp 5552  ran crn 5555  cres 5556  ccom 5558  cfv 6354  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534  *cxr 10668   < clt 10669  cle 10670  cmin 10864  (,)cioo 12733  (,]cioc 12734  [,)cico 12735  [,]cicc 12736  abscabs 14588  t crest 16689  topGenctg 16706  MetOpencmopn 20470  Topctop 21436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-rest 16691  df-topgen 16712  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-top 21437  df-topon 21454  df-bases 21489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator