MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Visualization version   GIF version

Theorem iocopnst 24857
Description: A half-open interval ending at 𝐵 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
iocopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))

Proof of Theorem iocopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 24673 . . . . 5 (𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,))
2 simp1 1136 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ))
4 simp2 1137 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣)
54a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣))
6 ltp1 11953 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
76adantr 480 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝐵 < (𝐵 + 1))
8 peano2re 11278 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
9 lelttr 11195 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1093expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1110ancom1s 653 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1211ancomsd 465 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
138, 12mpidan 689 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
147, 13mpand 695 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣𝐵𝑣 < (𝐵 + 1)))
1514impr 454 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝑣𝐵)) → 𝑣 < (𝐵 + 1))
16153adantr2 1171 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝑣 < (𝐵 + 1))
1716ex 412 . . . . . . . . . . 11 (𝐵 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
1817ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
193, 5, 183jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
20 rexr 11150 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
21 elico2 13302 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2220, 21sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2322biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
24 lelttr 11195 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴 < 𝑣))
25 ltle 11193 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
26253adant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
2724, 26syld 47 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
28273expa 1118 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
2928imp 406 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐴𝐶𝐶 < 𝑣)) → 𝐴𝑣)
3029an4s 660 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣)) → 𝐴𝑣)
31303adantr3 1172 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝐴𝑣)
3231ex 412 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3332anasss 466 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
34333adantr3 1172 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3534adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3623, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
37 simp3 1138 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵)
3837a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵))
393, 36, 383jcad 1129 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
4019, 39jcad 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
41 simpl1 1192 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
42 simpl2 1193 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐶 < 𝑣)
43 simpr3 1197 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣𝐵)
4441, 42, 433jca 1128 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵))
4540, 44impbid1 225 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
4623simp1d 1142 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4746rexrd 11154 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
48 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ)
49 elioc2 13301 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
5047, 48, 49syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
51 elin 3916 . . . . . . . 8 (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
528rexrd 11154 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ*)
5352ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐵 + 1) ∈ ℝ*)
54 elioo2 13278 . . . . . . . . . 10 ((𝐶 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ*) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
5547, 53, 54syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
56 elicc2 13303 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5756adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5855, 57anbi12d 632 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5951, 58bitrid 283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
6045, 50, 593bitr4d 311 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ 𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))))
6160eqrdv 2728 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
62 ineq1 4161 . . . . . 6 (𝑣 = (𝐶(,)(𝐵 + 1)) → (𝑣 ∩ (𝐴[,]𝐵)) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
6362rspceeqv 3598 . . . . 5 (((𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,)) ∧ (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
641, 61, 63sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
65 retop 24669 . . . . 5 (topGen‘ran (,)) ∈ Top
66 ovex 7374 . . . . 5 (𝐴[,]𝐵) ∈ V
67 elrest 17323 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵))))
6865, 66, 67mp2an 692 . . . 4 ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
6964, 68sylibr 234 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
70 iccssre 13321 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
7170adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
72 eqid 2730 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
73 iocopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7472, 73resubmet 24710 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7571, 74syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7669, 75eleqtrrd 2832 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ 𝐽)
7776ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wrex 3054  Vcvv 3434  cin 3899  wss 3900   class class class wbr 5089   × cxp 5612  ran crn 5615  cres 5616  ccom 5618  cfv 6477  (class class class)co 7341  cr 10997  1c1 10999   + caddc 11001  *cxr 11137   < clt 11138  cle 11139  cmin 11336  (,)cioo 13237  (,]cioc 13238  [,)cico 13239  [,]cicc 13240  abscabs 15133  t crest 17316  topGenctg 17333  MetOpencmopn 21274  Topctop 22801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-rest 17318  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-top 22802  df-topon 22819  df-bases 22854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator