MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocopnst Structured version   Visualization version   GIF version

Theorem iocopnst 24970
Description: A half-open interval ending at 𝐵 is open in the closed interval from 𝐴 to 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
iocopnst.1 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
Assertion
Ref Expression
iocopnst ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))

Proof of Theorem iocopnst
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 iooretop 24786 . . . . 5 (𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,))
2 simp1 1137 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ)
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 ∈ ℝ))
4 simp2 1138 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣)
54a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐶 < 𝑣))
6 ltp1 12107 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
76adantr 480 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝐵 < (𝐵 + 1))
8 peano2re 11434 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
9 lelttr 11351 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1093expa 1119 . . . . . . . . . . . . . . . . . 18 (((𝑣 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1110ancom1s 653 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝑣𝐵𝐵 < (𝐵 + 1)) → 𝑣 < (𝐵 + 1)))
1211ancomsd 465 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) ∧ (𝐵 + 1) ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
138, 12mpidan 689 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐵 < (𝐵 + 1) ∧ 𝑣𝐵) → 𝑣 < (𝐵 + 1)))
147, 13mpand 695 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑣𝐵𝑣 < (𝐵 + 1)))
1514impr 454 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝑣𝐵)) → 𝑣 < (𝐵 + 1))
16153adantr2 1171 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝑣 < (𝐵 + 1))
1716ex 412 . . . . . . . . . . 11 (𝐵 ∈ ℝ → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
1817ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣 < (𝐵 + 1)))
193, 5, 183jcad 1130 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
20 rexr 11307 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
21 elico2 13451 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2220, 21sylan2 593 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
2322biimpa 476 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
24 lelttr 11351 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴 < 𝑣))
25 ltle 11349 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
26253adant2 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝐴 < 𝑣𝐴𝑣))
2724, 26syld 47 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
28273expa 1119 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) → ((𝐴𝐶𝐶 < 𝑣) → 𝐴𝑣))
2928imp 406 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑣 ∈ ℝ) ∧ (𝐴𝐶𝐶 < 𝑣)) → 𝐴𝑣)
3029an4s 660 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣)) → 𝐴𝑣)
31303adantr3 1172 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) ∧ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)) → 𝐴𝑣)
3231ex 412 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴𝐶) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3332anasss 466 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
34333adantr3 1172 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3534adantlr 715 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
3623, 35syldan 591 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝐴𝑣))
37 simp3 1139 . . . . . . . . . . 11 ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵)
3837a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → 𝑣𝐵))
393, 36, 383jcad 1130 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
4019, 39jcad 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
41 simpl1 1192 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣 ∈ ℝ)
42 simpl2 1193 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝐶 < 𝑣)
43 simpr3 1197 . . . . . . . . 9 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → 𝑣𝐵)
4441, 42, 433jca 1129 . . . . . . . 8 (((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)) → (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵))
4540, 44impbid1 225 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
4623simp1d 1143 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4746rexrd 11311 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
48 simplr 769 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ)
49 elioc2 13450 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
5047, 48, 49syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣𝐵)))
51 elin 3967 . . . . . . . 8 (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)))
528rexrd 11311 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ*)
5352ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐵 + 1) ∈ ℝ*)
54 elioo2 13428 . . . . . . . . . 10 ((𝐶 ∈ ℝ* ∧ (𝐵 + 1) ∈ ℝ*) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
5547, 53, 54syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,)(𝐵 + 1)) ↔ (𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1))))
56 elicc2 13452 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5756adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐴[,]𝐵) ↔ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵)))
5855, 57anbi12d 632 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝑣 ∈ (𝐶(,)(𝐵 + 1)) ∧ 𝑣 ∈ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
5951, 58bitrid 283 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)) ↔ ((𝑣 ∈ ℝ ∧ 𝐶 < 𝑣𝑣 < (𝐵 + 1)) ∧ (𝑣 ∈ ℝ ∧ 𝐴𝑣𝑣𝐵))))
6045, 50, 593bitr4d 311 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝑣 ∈ (𝐶(,]𝐵) ↔ 𝑣 ∈ ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))))
6160eqrdv 2735 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
62 ineq1 4213 . . . . . 6 (𝑣 = (𝐶(,)(𝐵 + 1)) → (𝑣 ∩ (𝐴[,]𝐵)) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵)))
6362rspceeqv 3645 . . . . 5 (((𝐶(,)(𝐵 + 1)) ∈ (topGen‘ran (,)) ∧ (𝐶(,]𝐵) = ((𝐶(,)(𝐵 + 1)) ∩ (𝐴[,]𝐵))) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
641, 61, 63sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
65 retop 24782 . . . . 5 (topGen‘ran (,)) ∈ Top
66 ovex 7464 . . . . 5 (𝐴[,]𝐵) ∈ V
67 elrest 17472 . . . . 5 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵))))
6865, 66, 67mp2an 692 . . . 4 ((𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ↔ ∃𝑣 ∈ (topGen‘ran (,))(𝐶(,]𝐵) = (𝑣 ∩ (𝐴[,]𝐵)))
6964, 68sylibr 234 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
70 iccssre 13469 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
7170adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐴[,]𝐵) ⊆ ℝ)
72 eqid 2737 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
73 iocopnst.1 . . . . 5 𝐽 = (MetOpen‘((abs ∘ − ) ↾ ((𝐴[,]𝐵) × (𝐴[,]𝐵))))
7472, 73resubmet 24823 . . . 4 ((𝐴[,]𝐵) ⊆ ℝ → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7571, 74syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7669, 75eleqtrrd 2844 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶(,]𝐵) ∈ 𝐽)
7776ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶(,]𝐵) ∈ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  cin 3950  wss 3951   class class class wbr 5143   × cxp 5683  ran crn 5686  cres 5687  ccom 5689  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158  *cxr 11294   < clt 11295  cle 11296  cmin 11492  (,)cioo 13387  (,]cioc 13388  [,)cico 13389  [,]cicc 13390  abscabs 15273  t crest 17465  topGenctg 17482  MetOpencmopn 21354  Topctop 22899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator