MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmax Structured version   Visualization version   GIF version

Theorem absmax 14278
Description: The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.)
Assertion
Ref Expression
absmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))

Proof of Theorem absmax
StepHypRef Expression
1 recn 10229 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 2cn 11294 . . . . . . 7 2 ∈ ℂ
3 2ne0 11316 . . . . . . 7 2 ≠ 0
4 divcan3 10914 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴)
52, 3, 4mp3an23 1564 . . . . . 6 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
61, 5syl 17 . . . . 5 (𝐴 ∈ ℝ → ((2 · 𝐴) / 2) = 𝐴)
76ad2antlr 700 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((2 · 𝐴) / 2) = 𝐴)
8 ltle 10329 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
98imp 393 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵𝐴)
10 abssubge0 14276 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
11103expa 1111 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
129, 11syldan 573 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
1312oveq2d 6810 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐴𝐵)))
14 recn 10229 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 simpr 471 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
16 simpl 468 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
1715, 16, 15ppncand 10635 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
18 2times 11348 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
1918adantl 467 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) = (𝐴 + 𝐴))
2017, 19eqtr4d 2808 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2114, 1, 20syl2an 577 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2221adantr 466 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2313, 22eqtrd 2805 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐴))
2423oveq1d 6809 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐴) / 2))
25 ltnle 10320 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
2625biimpa 462 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ¬ 𝐴𝐵)
2726iffalsed 4237 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
287, 24, 273eqtr4rd 2816 . . 3 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2928ancom1s 626 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
30 divcan3 10914 . . . . . 6 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
312, 3, 30mp3an23 1564 . . . . 5 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
3214, 31syl 17 . . . 4 (𝐵 ∈ ℝ → ((2 · 𝐵) / 2) = 𝐵)
3332ad2antlr 700 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((2 · 𝐵) / 2) = 𝐵)
34 abssuble0 14277 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
35343expa 1111 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
3635oveq2d 6810 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐵𝐴)))
37 simpr 471 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
38 simpl 468 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
3937, 38, 37ppncand 10635 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐵))
40 addcom 10425 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4140oveq1d 6809 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = ((𝐵 + 𝐴) + (𝐵𝐴)))
42 2times 11348 . . . . . . . . 9 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
4342adantl 467 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
4439, 41, 433eqtr4d 2815 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
451, 14, 44syl2an 577 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4645adantr 466 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4736, 46eqtrd 2805 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐵))
4847oveq1d 6809 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐵) / 2))
49 iftrue 4232 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5049adantl 467 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5133, 48, 503eqtr4rd 2816 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
52 simpr 471 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
53 simpl 468 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
5429, 51, 52, 53ltlecasei 10348 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  ifcif 4226   class class class wbr 4787  cfv 6032  (class class class)co 6794  cc 10137  cr 10138  0cc0 10139   + caddc 10142   · cmul 10144   < clt 10277  cle 10278  cmin 10469   / cdiv 10887  2c2 11273  abscabs 14183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-sup 8505  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-n0 11496  df-z 11581  df-uz 11890  df-rp 12037  df-seq 13010  df-exp 13069  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator