MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmax Structured version   Visualization version   GIF version

Theorem absmax 15241
Description: The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.)
Assertion
Ref Expression
absmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))

Proof of Theorem absmax
StepHypRef Expression
1 recn 11105 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 2cn 12209 . . . . . . 7 2 ∈ ℂ
3 2ne0 12238 . . . . . . 7 2 ≠ 0
4 divcan3 11811 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴)
52, 3, 4mp3an23 1455 . . . . . 6 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
61, 5syl 17 . . . . 5 (𝐴 ∈ ℝ → ((2 · 𝐴) / 2) = 𝐴)
76ad2antlr 727 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((2 · 𝐴) / 2) = 𝐴)
8 ltle 11210 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
98imp 406 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵𝐴)
10 abssubge0 15239 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
11103expa 1118 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
129, 11syldan 591 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
1312oveq2d 7370 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐴𝐵)))
14 recn 11105 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 simpr 484 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
16 simpl 482 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
1715, 16, 15ppncand 11521 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
18 2times 12265 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
1918adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) = (𝐴 + 𝐴))
2017, 19eqtr4d 2771 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2114, 1, 20syl2an 596 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2221adantr 480 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2313, 22eqtrd 2768 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐴))
2423oveq1d 7369 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐴) / 2))
25 ltnle 11201 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
2625biimpa 476 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ¬ 𝐴𝐵)
2726iffalsed 4487 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
287, 24, 273eqtr4rd 2779 . . 3 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2928ancom1s 653 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
30 divcan3 11811 . . . . . 6 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
312, 3, 30mp3an23 1455 . . . . 5 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
3214, 31syl 17 . . . 4 (𝐵 ∈ ℝ → ((2 · 𝐵) / 2) = 𝐵)
3332ad2antlr 727 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((2 · 𝐵) / 2) = 𝐵)
34 abssuble0 15240 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
35343expa 1118 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
3635oveq2d 7370 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐵𝐴)))
37 simpr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
38 simpl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
3937, 38, 37ppncand 11521 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐵))
40 addcom 11308 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4140oveq1d 7369 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = ((𝐵 + 𝐴) + (𝐵𝐴)))
42 2times 12265 . . . . . . . . 9 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
4342adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
4439, 41, 433eqtr4d 2778 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
451, 14, 44syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4645adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4736, 46eqtrd 2768 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐵))
4847oveq1d 7369 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐵) / 2))
49 iftrue 4482 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5049adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5133, 48, 503eqtr4rd 2779 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
52 simpr 484 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
53 simpl 482 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
5429, 51, 52, 53ltlecasei 11230 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  ifcif 4476   class class class wbr 5095  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015   + caddc 11018   · cmul 11020   < clt 11155  cle 11156  cmin 11353   / cdiv 11783  2c2 12189  abscabs 15145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator