MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmax Structured version   Visualization version   GIF version

Theorem absmax 15041
Description: The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.)
Assertion
Ref Expression
absmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))

Proof of Theorem absmax
StepHypRef Expression
1 recn 10961 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 2cn 12048 . . . . . . 7 2 ∈ ℂ
3 2ne0 12077 . . . . . . 7 2 ≠ 0
4 divcan3 11659 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴)
52, 3, 4mp3an23 1452 . . . . . 6 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
61, 5syl 17 . . . . 5 (𝐴 ∈ ℝ → ((2 · 𝐴) / 2) = 𝐴)
76ad2antlr 724 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((2 · 𝐴) / 2) = 𝐴)
8 ltle 11063 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
98imp 407 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵𝐴)
10 abssubge0 15039 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
11103expa 1117 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
129, 11syldan 591 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
1312oveq2d 7291 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐴𝐵)))
14 recn 10961 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 simpr 485 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
16 simpl 483 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
1715, 16, 15ppncand 11372 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
18 2times 12109 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
1918adantl 482 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) = (𝐴 + 𝐴))
2017, 19eqtr4d 2781 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2114, 1, 20syl2an 596 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2221adantr 481 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2313, 22eqtrd 2778 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐴))
2423oveq1d 7290 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐴) / 2))
25 ltnle 11054 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
2625biimpa 477 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ¬ 𝐴𝐵)
2726iffalsed 4470 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
287, 24, 273eqtr4rd 2789 . . 3 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2928ancom1s 650 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
30 divcan3 11659 . . . . . 6 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
312, 3, 30mp3an23 1452 . . . . 5 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
3214, 31syl 17 . . . 4 (𝐵 ∈ ℝ → ((2 · 𝐵) / 2) = 𝐵)
3332ad2antlr 724 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((2 · 𝐵) / 2) = 𝐵)
34 abssuble0 15040 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
35343expa 1117 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
3635oveq2d 7291 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐵𝐴)))
37 simpr 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
38 simpl 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
3937, 38, 37ppncand 11372 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐵))
40 addcom 11161 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4140oveq1d 7290 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = ((𝐵 + 𝐴) + (𝐵𝐴)))
42 2times 12109 . . . . . . . . 9 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
4342adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
4439, 41, 433eqtr4d 2788 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
451, 14, 44syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4645adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4736, 46eqtrd 2778 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐵))
4847oveq1d 7290 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐵) / 2))
49 iftrue 4465 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5049adantl 482 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5133, 48, 503eqtr4rd 2789 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
52 simpr 485 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
53 simpl 483 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
5429, 51, 52, 53ltlecasei 11083 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator