Proof of Theorem absmax
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | recn 11245 | . . . . . 6
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) | 
| 2 |  | 2cn 12341 | . . . . . . 7
⊢ 2 ∈
ℂ | 
| 3 |  | 2ne0 12370 | . . . . . . 7
⊢ 2 ≠
0 | 
| 4 |  | divcan3 11948 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴) | 
| 5 | 2, 3, 4 | mp3an23 1455 | . . . . . 6
⊢ (𝐴 ∈ ℂ → ((2
· 𝐴) / 2) = 𝐴) | 
| 6 | 1, 5 | syl 17 | . . . . 5
⊢ (𝐴 ∈ ℝ → ((2
· 𝐴) / 2) = 𝐴) | 
| 7 | 6 | ad2antlr 727 | . . . 4
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((2 · 𝐴) / 2) = 𝐴) | 
| 8 |  | ltle 11349 | . . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | 
| 9 | 8 | imp 406 | . . . . . . . 8
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵 ≤ 𝐴) | 
| 10 |  | abssubge0 15366 | . . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) | 
| 11 | 10 | 3expa 1119 | . . . . . . . 8
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) | 
| 12 | 9, 11 | syldan 591 | . . . . . . 7
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) | 
| 13 | 12 | oveq2d 7447 | . . . . . 6
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) = ((𝐴 + 𝐵) + (𝐴 − 𝐵))) | 
| 14 |  | recn 11245 | . . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) | 
| 15 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈
ℂ) | 
| 16 |  | simpl 482 | . . . . . . . . . 10
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈
ℂ) | 
| 17 | 15, 16, 15 | ppncand 11660 | . . . . . . . . 9
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (𝐴 + 𝐴)) | 
| 18 |  | 2times 12402 | . . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (2
· 𝐴) = (𝐴 + 𝐴)) | 
| 19 | 18 | adantl 481 | . . . . . . . . 9
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2
· 𝐴) = (𝐴 + 𝐴)) | 
| 20 | 17, 19 | eqtr4d 2780 | . . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (2 · 𝐴)) | 
| 21 | 14, 1, 20 | syl2an 596 | . . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (2 · 𝐴)) | 
| 22 | 21 | adantr 480 | . . . . . 6
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (2 · 𝐴)) | 
| 23 | 13, 22 | eqtrd 2777 | . . . . 5
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) = (2 · 𝐴)) | 
| 24 | 23 | oveq1d 7446 | . . . 4
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) = ((2 · 𝐴) / 2)) | 
| 25 |  | ltnle 11340 | . . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | 
| 26 | 25 | biimpa 476 | . . . . 5
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ¬ 𝐴 ≤ 𝐵) | 
| 27 | 26 | iffalsed 4536 | . . . 4
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐴) | 
| 28 | 7, 24, 27 | 3eqtr4rd 2788 | . . 3
⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) | 
| 29 | 28 | ancom1s 653 | . 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) | 
| 30 |  | divcan3 11948 | . . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵) | 
| 31 | 2, 3, 30 | mp3an23 1455 | . . . . 5
⊢ (𝐵 ∈ ℂ → ((2
· 𝐵) / 2) = 𝐵) | 
| 32 | 14, 31 | syl 17 | . . . 4
⊢ (𝐵 ∈ ℝ → ((2
· 𝐵) / 2) = 𝐵) | 
| 33 | 32 | ad2antlr 727 | . . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((2 · 𝐵) / 2) = 𝐵) | 
| 34 |  | abssuble0 15367 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | 
| 35 | 34 | 3expa 1119 | . . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | 
| 36 | 35 | oveq2d 7447 | . . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) = ((𝐴 + 𝐵) + (𝐵 − 𝐴))) | 
| 37 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈
ℂ) | 
| 38 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈
ℂ) | 
| 39 | 37, 38, 37 | ppncand 11660 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 + 𝐴) + (𝐵 − 𝐴)) = (𝐵 + 𝐵)) | 
| 40 |  | addcom 11447 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | 
| 41 | 40 | oveq1d 7446 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵 − 𝐴)) = ((𝐵 + 𝐴) + (𝐵 − 𝐴))) | 
| 42 |  | 2times 12402 | . . . . . . . . 9
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) | 
| 43 | 42 | adantl 481 | . . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) | 
| 44 | 39, 41, 43 | 3eqtr4d 2787 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵 − 𝐴)) = (2 · 𝐵)) | 
| 45 | 1, 14, 44 | syl2an 596 | . . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐵 − 𝐴)) = (2 · 𝐵)) | 
| 46 | 45 | adantr 480 | . . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐴 + 𝐵) + (𝐵 − 𝐴)) = (2 · 𝐵)) | 
| 47 | 36, 46 | eqtrd 2777 | . . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) = (2 · 𝐵)) | 
| 48 | 47 | oveq1d 7446 | . . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) = ((2 · 𝐵) / 2)) | 
| 49 |  | iftrue 4531 | . . . 4
⊢ (𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) | 
| 50 | 49 | adantl 481 | . . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) | 
| 51 | 33, 48, 50 | 3eqtr4rd 2788 | . 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) | 
| 52 |  | simpr 484 | . 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) | 
| 53 |  | simpl 482 | . 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈
ℝ) | 
| 54 | 29, 51, 52, 53 | ltlecasei 11369 | 1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |