HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredlem2 Structured version   Visualization version   GIF version

Theorem chirredlem2 32375
Description: Lemma for chirredi 32378. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
chirred.1 𝐴C
Assertion
Ref Expression
chirredlem2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Distinct variable group:   𝑞,𝑝,𝑟,𝐴

Proof of Theorem chirredlem2
StepHypRef Expression
1 atelch 32328 . . . . . 6 (𝑝 ∈ HAtoms → 𝑝C )
2 chjcom 31490 . . . . . 6 ((𝑝C𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
31, 2sylan 580 . . . . 5 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
43ad2ant2r 747 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑝 𝑞) = (𝑞 𝑝))
54adantr 480 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 𝑞) = (𝑞 𝑝))
65ineq2d 4169 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = ((⊥‘𝑟) ∩ (𝑞 𝑝)))
7 atelch 32328 . . . . . . . . . . 11 (𝑟 ∈ HAtoms → 𝑟C )
8 choccl 31290 . . . . . . . . . . 11 (𝑟C → (⊥‘𝑟) ∈ C )
97, 8syl 17 . . . . . . . . . 10 (𝑟 ∈ HAtoms → (⊥‘𝑟) ∈ C )
10 id 22 . . . . . . . . . 10 (𝑞C𝑞C )
119, 10, 13anim123i 1151 . . . . . . . . 9 ((𝑟 ∈ HAtoms ∧ 𝑞C𝑝 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
12113com13 1124 . . . . . . . 8 ((𝑝 ∈ HAtoms ∧ 𝑞C𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
13123expa 1118 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1413adantllr 719 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1514adantlrr 721 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1615adantrr 717 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1716adantrr 717 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
18 simpll 766 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞C )
199ad2antrl 728 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → (⊥‘𝑟) ∈ C )
20 chirred.1 . . . . . . . . 9 𝐴C
21 chsscon3 31484 . . . . . . . . 9 ((𝑟C𝐴C ) → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
227, 20, 21sylancl 586 . . . . . . . 8 (𝑟 ∈ HAtoms → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
2322biimpa 476 . . . . . . 7 ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑟))
24 sstr 3939 . . . . . . 7 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑟)) → 𝑞 ⊆ (⊥‘𝑟))
2523, 24sylan2 593 . . . . . 6 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
2625adantll 714 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
27 lecm 31601 . . . . 5 ((𝑞C ∧ (⊥‘𝑟) ∈ C𝑞 ⊆ (⊥‘𝑟)) → 𝑞 𝐶 (⊥‘𝑟))
2818, 19, 26, 27syl3anc 1373 . . . 4 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 𝐶 (⊥‘𝑟))
2928ad2ant2lr 748 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 (⊥‘𝑟))
30 chsscon3 31484 . . . . . . . . . . . . . 14 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3120, 30mpan2 691 . . . . . . . . . . . . 13 (𝑝C → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3231biimpa 476 . . . . . . . . . . . 12 ((𝑝C𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
33 sstr 3939 . . . . . . . . . . . 12 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
3432, 33sylan2 593 . . . . . . . . . . 11 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝C𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3534an12s 649 . . . . . . . . . 10 ((𝑝C ∧ (𝑞 ⊆ (⊥‘𝐴) ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3635ancom2s 650 . . . . . . . . 9 ((𝑝C ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
3736adantll 714 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
38 choccl 31290 . . . . . . . . . . . 12 (𝑝C → (⊥‘𝑝) ∈ C )
39 lecm 31601 . . . . . . . . . . . 12 ((𝑞C ∧ (⊥‘𝑝) ∈ C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
4038, 39syl3an2 1164 . . . . . . . . . . 11 ((𝑞C𝑝C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
41403expia 1121 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 (⊥‘𝑝)))
42 cmcm2 31600 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 𝐶 𝑝𝑞 𝐶 (⊥‘𝑝)))
4341, 42sylibrd 259 . . . . . . . . 9 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4443adantr 480 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4537, 44mpd 15 . . . . . . 7 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
461, 45sylanl2 681 . . . . . 6 (((𝑞C𝑝 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4746ancom1s 653 . . . . 5 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4847an4s 660 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4948adantr 480 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 𝑝)
50 fh2 31603 . . 3 ((((⊥‘𝑟) ∈ C𝑞C𝑝C ) ∧ (𝑞 𝐶 (⊥‘𝑟) ∧ 𝑞 𝐶 𝑝)) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
5117, 29, 49, 50syl12anc 836 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
52 sseqin2 4172 . . . . . 6 (𝑞 ⊆ (⊥‘𝑟) ↔ ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5326, 52sylib 218 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5453ad2ant2lr 748 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
55 incom 4158 . . . . 5 ((⊥‘𝑟) ∩ 𝑝) = (𝑝 ∩ (⊥‘𝑟))
5620chirredlem1 32374 . . . . . 6 (((𝑝 ∈ HAtoms ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5756adantllr 719 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5855, 57eqtrid 2780 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑝) = 0)
5954, 58oveq12d 7372 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = (𝑞 0))
60 chj0 31481 . . . . 5 (𝑞C → (𝑞 0) = 𝑞)
6160adantr 480 . . . 4 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝑞 0) = 𝑞)
6261ad2antlr 727 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑞 0) = 𝑞)
6359, 62eqtrd 2768 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = 𝑞)
646, 51, 633eqtrd 2772 1 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  wss 3898   class class class wbr 5095  cfv 6488  (class class class)co 7354   C cch 30913  cort 30914   chj 30917  0c0h 30919   𝐶 ccm 30920  HAtomscat 30949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cc 10335  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094  ax-mulf 11095  ax-hilex 30983  ax-hfvadd 30984  ax-hvcom 30985  ax-hvass 30986  ax-hv0cl 30987  ax-hvaddid 30988  ax-hfvmul 30989  ax-hvmulid 30990  ax-hvmulass 30991  ax-hvdistr1 30992  ax-hvdistr2 30993  ax-hvmul0 30994  ax-hfi 31063  ax-his1 31066  ax-his2 31067  ax-his3 31068  ax-his4 31069  ax-hcompl 31186
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-oadd 8397  df-omul 8398  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-acn 9844  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-rlim 15400  df-sum 15598  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-cn 23145  df-cnp 23146  df-lm 23147  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cfil 25185  df-cau 25186  df-cmet 25187  df-grpo 30477  df-gid 30478  df-ginv 30479  df-gdiv 30480  df-ablo 30529  df-vc 30543  df-nv 30576  df-va 30579  df-ba 30580  df-sm 30581  df-0v 30582  df-vs 30583  df-nmcv 30584  df-ims 30585  df-dip 30685  df-ssp 30706  df-ph 30797  df-cbn 30847  df-hnorm 30952  df-hba 30953  df-hvsub 30955  df-hlim 30956  df-hcau 30957  df-sh 31191  df-ch 31205  df-oc 31236  df-ch0 31237  df-shs 31292  df-span 31293  df-chj 31294  df-chsup 31295  df-pjh 31379  df-cm 31567  df-cv 32263  df-at 32322
This theorem is referenced by:  chirredlem3  32376
  Copyright terms: Public domain W3C validator