HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredlem2 Structured version   Visualization version   GIF version

Theorem chirredlem2 32113
Description: Lemma for chirredi 32116. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
chirred.1 𝐴C
Assertion
Ref Expression
chirredlem2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Distinct variable group:   𝑞,𝑝,𝑟,𝐴

Proof of Theorem chirredlem2
StepHypRef Expression
1 atelch 32066 . . . . . 6 (𝑝 ∈ HAtoms → 𝑝C )
2 chjcom 31228 . . . . . 6 ((𝑝C𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
31, 2sylan 579 . . . . 5 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
43ad2ant2r 744 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑝 𝑞) = (𝑞 𝑝))
54adantr 480 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 𝑞) = (𝑞 𝑝))
65ineq2d 4204 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = ((⊥‘𝑟) ∩ (𝑞 𝑝)))
7 atelch 32066 . . . . . . . . . . 11 (𝑟 ∈ HAtoms → 𝑟C )
8 choccl 31028 . . . . . . . . . . 11 (𝑟C → (⊥‘𝑟) ∈ C )
97, 8syl 17 . . . . . . . . . 10 (𝑟 ∈ HAtoms → (⊥‘𝑟) ∈ C )
10 id 22 . . . . . . . . . 10 (𝑞C𝑞C )
119, 10, 13anim123i 1148 . . . . . . . . 9 ((𝑟 ∈ HAtoms ∧ 𝑞C𝑝 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
12113com13 1121 . . . . . . . 8 ((𝑝 ∈ HAtoms ∧ 𝑞C𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
13123expa 1115 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1413adantllr 716 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1514adantlrr 718 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1615adantrr 714 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1716adantrr 714 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
18 simpll 764 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞C )
199ad2antrl 725 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → (⊥‘𝑟) ∈ C )
20 chirred.1 . . . . . . . . 9 𝐴C
21 chsscon3 31222 . . . . . . . . 9 ((𝑟C𝐴C ) → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
227, 20, 21sylancl 585 . . . . . . . 8 (𝑟 ∈ HAtoms → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
2322biimpa 476 . . . . . . 7 ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑟))
24 sstr 3982 . . . . . . 7 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑟)) → 𝑞 ⊆ (⊥‘𝑟))
2523, 24sylan2 592 . . . . . 6 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
2625adantll 711 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
27 lecm 31339 . . . . 5 ((𝑞C ∧ (⊥‘𝑟) ∈ C𝑞 ⊆ (⊥‘𝑟)) → 𝑞 𝐶 (⊥‘𝑟))
2818, 19, 26, 27syl3anc 1368 . . . 4 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 𝐶 (⊥‘𝑟))
2928ad2ant2lr 745 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 (⊥‘𝑟))
30 chsscon3 31222 . . . . . . . . . . . . . 14 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3120, 30mpan2 688 . . . . . . . . . . . . 13 (𝑝C → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3231biimpa 476 . . . . . . . . . . . 12 ((𝑝C𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
33 sstr 3982 . . . . . . . . . . . 12 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
3432, 33sylan2 592 . . . . . . . . . . 11 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝C𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3534an12s 646 . . . . . . . . . 10 ((𝑝C ∧ (𝑞 ⊆ (⊥‘𝐴) ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3635ancom2s 647 . . . . . . . . 9 ((𝑝C ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
3736adantll 711 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
38 choccl 31028 . . . . . . . . . . . 12 (𝑝C → (⊥‘𝑝) ∈ C )
39 lecm 31339 . . . . . . . . . . . 12 ((𝑞C ∧ (⊥‘𝑝) ∈ C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
4038, 39syl3an2 1161 . . . . . . . . . . 11 ((𝑞C𝑝C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
41403expia 1118 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 (⊥‘𝑝)))
42 cmcm2 31338 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 𝐶 𝑝𝑞 𝐶 (⊥‘𝑝)))
4341, 42sylibrd 259 . . . . . . . . 9 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4443adantr 480 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4537, 44mpd 15 . . . . . . 7 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
461, 45sylanl2 678 . . . . . 6 (((𝑞C𝑝 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4746ancom1s 650 . . . . 5 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4847an4s 657 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4948adantr 480 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 𝑝)
50 fh2 31341 . . 3 ((((⊥‘𝑟) ∈ C𝑞C𝑝C ) ∧ (𝑞 𝐶 (⊥‘𝑟) ∧ 𝑞 𝐶 𝑝)) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
5117, 29, 49, 50syl12anc 834 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
52 sseqin2 4207 . . . . . 6 (𝑞 ⊆ (⊥‘𝑟) ↔ ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5326, 52sylib 217 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5453ad2ant2lr 745 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
55 incom 4193 . . . . 5 ((⊥‘𝑟) ∩ 𝑝) = (𝑝 ∩ (⊥‘𝑟))
5620chirredlem1 32112 . . . . . 6 (((𝑝 ∈ HAtoms ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5756adantllr 716 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5855, 57eqtrid 2776 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑝) = 0)
5954, 58oveq12d 7419 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = (𝑞 0))
60 chj0 31219 . . . . 5 (𝑞C → (𝑞 0) = 𝑞)
6160adantr 480 . . . 4 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝑞 0) = 𝑞)
6261ad2antlr 724 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑞 0) = 𝑞)
6359, 62eqtrd 2764 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = 𝑞)
646, 51, 633eqtrd 2768 1 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  cin 3939  wss 3940   class class class wbr 5138  cfv 6533  (class class class)co 7401   C cch 30651  cort 30652   chj 30655  0c0h 30657   𝐶 ccm 30658  HAtomscat 30687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186  ax-hilex 30721  ax-hfvadd 30722  ax-hvcom 30723  ax-hvass 30724  ax-hv0cl 30725  ax-hvaddid 30726  ax-hfvmul 30727  ax-hvmulid 30728  ax-hvmulass 30729  ax-hvdistr1 30730  ax-hvdistr2 30731  ax-hvmul0 30732  ax-hfi 30801  ax-his1 30804  ax-his2 30805  ax-his3 30806  ax-his4 30807  ax-hcompl 30924
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-acn 9933  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-cn 23053  df-cnp 23054  df-lm 23055  df-haus 23141  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-xms 24148  df-ms 24149  df-tms 24150  df-cfil 25105  df-cau 25106  df-cmet 25107  df-grpo 30215  df-gid 30216  df-ginv 30217  df-gdiv 30218  df-ablo 30267  df-vc 30281  df-nv 30314  df-va 30317  df-ba 30318  df-sm 30319  df-0v 30320  df-vs 30321  df-nmcv 30322  df-ims 30323  df-dip 30423  df-ssp 30444  df-ph 30535  df-cbn 30585  df-hnorm 30690  df-hba 30691  df-hvsub 30693  df-hlim 30694  df-hcau 30695  df-sh 30929  df-ch 30943  df-oc 30974  df-ch0 30975  df-shs 31030  df-span 31031  df-chj 31032  df-chsup 31033  df-pjh 31117  df-cm 31305  df-cv 32001  df-at 32060
This theorem is referenced by:  chirredlem3  32114
  Copyright terms: Public domain W3C validator