HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredlem2 Structured version   Visualization version   GIF version

Theorem chirredlem2 32419
Description: Lemma for chirredi 32422. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
chirred.1 𝐴C
Assertion
Ref Expression
chirredlem2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Distinct variable group:   𝑞,𝑝,𝑟,𝐴

Proof of Theorem chirredlem2
StepHypRef Expression
1 atelch 32372 . . . . . 6 (𝑝 ∈ HAtoms → 𝑝C )
2 chjcom 31534 . . . . . 6 ((𝑝C𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
31, 2sylan 580 . . . . 5 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
43ad2ant2r 747 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑝 𝑞) = (𝑞 𝑝))
54adantr 480 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 𝑞) = (𝑞 𝑝))
65ineq2d 4227 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = ((⊥‘𝑟) ∩ (𝑞 𝑝)))
7 atelch 32372 . . . . . . . . . . 11 (𝑟 ∈ HAtoms → 𝑟C )
8 choccl 31334 . . . . . . . . . . 11 (𝑟C → (⊥‘𝑟) ∈ C )
97, 8syl 17 . . . . . . . . . 10 (𝑟 ∈ HAtoms → (⊥‘𝑟) ∈ C )
10 id 22 . . . . . . . . . 10 (𝑞C𝑞C )
119, 10, 13anim123i 1150 . . . . . . . . 9 ((𝑟 ∈ HAtoms ∧ 𝑞C𝑝 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
12113com13 1123 . . . . . . . 8 ((𝑝 ∈ HAtoms ∧ 𝑞C𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
13123expa 1117 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1413adantllr 719 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1514adantlrr 721 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1615adantrr 717 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1716adantrr 717 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
18 simpll 767 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞C )
199ad2antrl 728 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → (⊥‘𝑟) ∈ C )
20 chirred.1 . . . . . . . . 9 𝐴C
21 chsscon3 31528 . . . . . . . . 9 ((𝑟C𝐴C ) → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
227, 20, 21sylancl 586 . . . . . . . 8 (𝑟 ∈ HAtoms → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
2322biimpa 476 . . . . . . 7 ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑟))
24 sstr 4003 . . . . . . 7 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑟)) → 𝑞 ⊆ (⊥‘𝑟))
2523, 24sylan2 593 . . . . . 6 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
2625adantll 714 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
27 lecm 31645 . . . . 5 ((𝑞C ∧ (⊥‘𝑟) ∈ C𝑞 ⊆ (⊥‘𝑟)) → 𝑞 𝐶 (⊥‘𝑟))
2818, 19, 26, 27syl3anc 1370 . . . 4 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 𝐶 (⊥‘𝑟))
2928ad2ant2lr 748 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 (⊥‘𝑟))
30 chsscon3 31528 . . . . . . . . . . . . . 14 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3120, 30mpan2 691 . . . . . . . . . . . . 13 (𝑝C → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3231biimpa 476 . . . . . . . . . . . 12 ((𝑝C𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
33 sstr 4003 . . . . . . . . . . . 12 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
3432, 33sylan2 593 . . . . . . . . . . 11 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝C𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3534an12s 649 . . . . . . . . . 10 ((𝑝C ∧ (𝑞 ⊆ (⊥‘𝐴) ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3635ancom2s 650 . . . . . . . . 9 ((𝑝C ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
3736adantll 714 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
38 choccl 31334 . . . . . . . . . . . 12 (𝑝C → (⊥‘𝑝) ∈ C )
39 lecm 31645 . . . . . . . . . . . 12 ((𝑞C ∧ (⊥‘𝑝) ∈ C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
4038, 39syl3an2 1163 . . . . . . . . . . 11 ((𝑞C𝑝C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
41403expia 1120 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 (⊥‘𝑝)))
42 cmcm2 31644 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 𝐶 𝑝𝑞 𝐶 (⊥‘𝑝)))
4341, 42sylibrd 259 . . . . . . . . 9 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4443adantr 480 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4537, 44mpd 15 . . . . . . 7 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
461, 45sylanl2 681 . . . . . 6 (((𝑞C𝑝 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4746ancom1s 653 . . . . 5 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4847an4s 660 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4948adantr 480 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 𝑝)
50 fh2 31647 . . 3 ((((⊥‘𝑟) ∈ C𝑞C𝑝C ) ∧ (𝑞 𝐶 (⊥‘𝑟) ∧ 𝑞 𝐶 𝑝)) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
5117, 29, 49, 50syl12anc 837 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
52 sseqin2 4230 . . . . . 6 (𝑞 ⊆ (⊥‘𝑟) ↔ ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5326, 52sylib 218 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5453ad2ant2lr 748 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
55 incom 4216 . . . . 5 ((⊥‘𝑟) ∩ 𝑝) = (𝑝 ∩ (⊥‘𝑟))
5620chirredlem1 32418 . . . . . 6 (((𝑝 ∈ HAtoms ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5756adantllr 719 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5855, 57eqtrid 2786 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑝) = 0)
5954, 58oveq12d 7448 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = (𝑞 0))
60 chj0 31525 . . . . 5 (𝑞C → (𝑞 0) = 𝑞)
6160adantr 480 . . . 4 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝑞 0) = 𝑞)
6261ad2antlr 727 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑞 0) = 𝑞)
6359, 62eqtrd 2774 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = 𝑞)
646, 51, 633eqtrd 2778 1 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  cin 3961  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430   C cch 30957  cort 30958   chj 30961  0c0h 30963   𝐶 ccm 30964  HAtomscat 30993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113  ax-hcompl 31230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-lm 23252  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cfil 25302  df-cau 25303  df-cmet 25304  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-dip 30729  df-ssp 30750  df-ph 30841  df-cbn 30891  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-hlim 31000  df-hcau 31001  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-shs 31336  df-span 31337  df-chj 31338  df-chsup 31339  df-pjh 31423  df-cm 31611  df-cv 32307  df-at 32366
This theorem is referenced by:  chirredlem3  32420
  Copyright terms: Public domain W3C validator