HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredlem2 Structured version   Visualization version   GIF version

Theorem chirredlem2 30750
Description: Lemma for chirredi 30753. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
chirred.1 𝐴C
Assertion
Ref Expression
chirredlem2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Distinct variable group:   𝑞,𝑝,𝑟,𝐴

Proof of Theorem chirredlem2
StepHypRef Expression
1 atelch 30703 . . . . . 6 (𝑝 ∈ HAtoms → 𝑝C )
2 chjcom 29865 . . . . . 6 ((𝑝C𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
31, 2sylan 580 . . . . 5 ((𝑝 ∈ HAtoms ∧ 𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
43ad2ant2r 744 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → (𝑝 𝑞) = (𝑞 𝑝))
54adantr 481 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 𝑞) = (𝑞 𝑝))
65ineq2d 4148 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = ((⊥‘𝑟) ∩ (𝑞 𝑝)))
7 atelch 30703 . . . . . . . . . . 11 (𝑟 ∈ HAtoms → 𝑟C )
8 choccl 29665 . . . . . . . . . . 11 (𝑟C → (⊥‘𝑟) ∈ C )
97, 8syl 17 . . . . . . . . . 10 (𝑟 ∈ HAtoms → (⊥‘𝑟) ∈ C )
10 id 22 . . . . . . . . . 10 (𝑞C𝑞C )
119, 10, 13anim123i 1150 . . . . . . . . 9 ((𝑟 ∈ HAtoms ∧ 𝑞C𝑝 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
12113com13 1123 . . . . . . . 8 ((𝑝 ∈ HAtoms ∧ 𝑞C𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
13123expa 1117 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1413adantllr 716 . . . . . 6 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞C ) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1514adantlrr 718 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1615adantrr 714 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
1716adantrr 714 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∈ C𝑞C𝑝C ))
18 simpll 764 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞C )
199ad2antrl 725 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → (⊥‘𝑟) ∈ C )
20 chirred.1 . . . . . . . . 9 𝐴C
21 chsscon3 29859 . . . . . . . . 9 ((𝑟C𝐴C ) → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
227, 20, 21sylancl 586 . . . . . . . 8 (𝑟 ∈ HAtoms → (𝑟𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑟)))
2322biimpa 477 . . . . . . 7 ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑟))
24 sstr 3930 . . . . . . 7 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑟)) → 𝑞 ⊆ (⊥‘𝑟))
2523, 24sylan2 593 . . . . . 6 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
2625adantll 711 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 ⊆ (⊥‘𝑟))
27 lecm 29976 . . . . 5 ((𝑞C ∧ (⊥‘𝑟) ∈ C𝑞 ⊆ (⊥‘𝑟)) → 𝑞 𝐶 (⊥‘𝑟))
2818, 19, 26, 27syl3anc 1370 . . . 4 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → 𝑞 𝐶 (⊥‘𝑟))
2928ad2ant2lr 745 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 (⊥‘𝑟))
30 chsscon3 29859 . . . . . . . . . . . . . 14 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3120, 30mpan2 688 . . . . . . . . . . . . 13 (𝑝C → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
3231biimpa 477 . . . . . . . . . . . 12 ((𝑝C𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
33 sstr 3930 . . . . . . . . . . . 12 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
3432, 33sylan2 593 . . . . . . . . . . 11 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝C𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3534an12s 646 . . . . . . . . . 10 ((𝑝C ∧ (𝑞 ⊆ (⊥‘𝐴) ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
3635ancom2s 647 . . . . . . . . 9 ((𝑝C ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
3736adantll 711 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ⊆ (⊥‘𝑝))
38 choccl 29665 . . . . . . . . . . . 12 (𝑝C → (⊥‘𝑝) ∈ C )
39 lecm 29976 . . . . . . . . . . . 12 ((𝑞C ∧ (⊥‘𝑝) ∈ C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
4038, 39syl3an2 1163 . . . . . . . . . . 11 ((𝑞C𝑝C𝑞 ⊆ (⊥‘𝑝)) → 𝑞 𝐶 (⊥‘𝑝))
41403expia 1120 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 (⊥‘𝑝)))
42 cmcm2 29975 . . . . . . . . . 10 ((𝑞C𝑝C ) → (𝑞 𝐶 𝑝𝑞 𝐶 (⊥‘𝑝)))
4341, 42sylibrd 258 . . . . . . . . 9 ((𝑞C𝑝C ) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4443adantr 481 . . . . . . . 8 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → (𝑞 ⊆ (⊥‘𝑝) → 𝑞 𝐶 𝑝))
4537, 44mpd 15 . . . . . . 7 (((𝑞C𝑝C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
461, 45sylanl2 678 . . . . . 6 (((𝑞C𝑝 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4746ancom1s 650 . . . . 5 (((𝑝 ∈ HAtoms ∧ 𝑞C ) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4847an4s 657 . . . 4 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) → 𝑞 𝐶 𝑝)
4948adantr 481 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → 𝑞 𝐶 𝑝)
50 fh2 29978 . . 3 ((((⊥‘𝑟) ∈ C𝑞C𝑝C ) ∧ (𝑞 𝐶 (⊥‘𝑟) ∧ 𝑞 𝐶 𝑝)) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
5117, 29, 49, 50syl12anc 834 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑞 𝑝)) = (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)))
52 sseqin2 4151 . . . . . 6 (𝑞 ⊆ (⊥‘𝑟) ↔ ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5326, 52sylib 217 . . . . 5 (((𝑞C𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟𝐴)) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
5453ad2ant2lr 745 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑞) = 𝑞)
55 incom 4136 . . . . 5 ((⊥‘𝑟) ∩ 𝑝) = (𝑝 ∩ (⊥‘𝑟))
5620chirredlem1 30749 . . . . . 6 (((𝑝 ∈ HAtoms ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5756adantllr 716 . . . . 5 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0)
5855, 57eqtrid 2790 . . . 4 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ 𝑝) = 0)
5954, 58oveq12d 7295 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = (𝑞 0))
60 chj0 29856 . . . . 5 (𝑞C → (𝑞 0) = 𝑞)
6160adantr 481 . . . 4 ((𝑞C𝑞 ⊆ (⊥‘𝐴)) → (𝑞 0) = 𝑞)
6261ad2antlr 724 . . 3 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑞 0) = 𝑞)
6359, 62eqtrd 2778 . 2 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → (((⊥‘𝑟) ∩ 𝑞) ∨ ((⊥‘𝑟) ∩ 𝑝)) = 𝑞)
646, 51, 633eqtrd 2782 1 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞C𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟𝐴) ∧ 𝑟 ⊆ (𝑝 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 𝑞)) = 𝑞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3887  wss 3888   class class class wbr 5076  cfv 6435  (class class class)co 7277   C cch 29288  cort 29289   chj 29292  0c0h 29294   𝐶 ccm 29295  HAtomscat 29324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cc 10189  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947  ax-addf 10948  ax-mulf 10949  ax-hilex 29358  ax-hfvadd 29359  ax-hvcom 29360  ax-hvass 29361  ax-hv0cl 29362  ax-hvaddid 29363  ax-hfvmul 29364  ax-hvmulid 29365  ax-hvmulass 29366  ax-hvdistr1 29367  ax-hvdistr2 29368  ax-hvmul0 29369  ax-hfi 29438  ax-his1 29441  ax-his2 29442  ax-his3 29443  ax-his4 29444  ax-hcompl 29561
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7976  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-2o 8296  df-oadd 8299  df-omul 8300  df-er 8496  df-map 8615  df-pm 8616  df-ixp 8684  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-fsupp 9127  df-fi 9168  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-acn 9698  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-uz 12581  df-q 12687  df-rp 12729  df-xneg 12846  df-xadd 12847  df-xmul 12848  df-ioo 13081  df-ico 13083  df-icc 13084  df-fz 13238  df-fzo 13381  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-cn 22376  df-cnp 22377  df-lm 22378  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cfil 24417  df-cau 24418  df-cmet 24419  df-grpo 28852  df-gid 28853  df-ginv 28854  df-gdiv 28855  df-ablo 28904  df-vc 28918  df-nv 28951  df-va 28954  df-ba 28955  df-sm 28956  df-0v 28957  df-vs 28958  df-nmcv 28959  df-ims 28960  df-dip 29060  df-ssp 29081  df-ph 29172  df-cbn 29222  df-hnorm 29327  df-hba 29328  df-hvsub 29330  df-hlim 29331  df-hcau 29332  df-sh 29566  df-ch 29580  df-oc 29611  df-ch0 29612  df-shs 29667  df-span 29668  df-chj 29669  df-chsup 29670  df-pjh 29754  df-cm 29942  df-cv 30638  df-at 30697
This theorem is referenced by:  chirredlem3  30751
  Copyright terms: Public domain W3C validator