Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relowlssretop Structured version   Visualization version   GIF version

Theorem relowlssretop 34513
Description: The lower limit topology on the reals is finer than the standard topology. (Contributed by ML, 1-Aug-2020.)
Hypothesis
Ref Expression
relowlssretop.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
relowlssretop (topGen‘ran (,)) ⊆ (topGen‘𝐼)

Proof of Theorem relowlssretop
Dummy variables 𝑎 𝑏 𝑖 𝑜 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12825 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 6511 . . . . . 6 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 7314 . . . . . 6 ((,) Fn (ℝ* × ℝ*) → (𝑜 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏)))
41, 2, 3mp2b 10 . . . . 5 (𝑜 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏))
5 elxr 12501 . . . . . . . . . 10 (𝑏 ∈ ℝ* ↔ (𝑏 ∈ ℝ ∨ 𝑏 = +∞ ∨ 𝑏 = -∞))
6 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ) → 𝑏 ∈ ℝ)
7 elioore 12758 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ)
86, 7anim12ci 613 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ))
9 relowlssretop.1 . . . . . . . . . . . . . . . 16 𝐼 = ([,) “ (ℝ × ℝ))
109icoreelrn 34511 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∈ 𝐼)
118, 10syl 17 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∈ 𝐼)
127adantl 482 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ ℝ)
137leidd 11195 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥𝑥)
1413adantl 482 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥𝑥)
156rexrd 10680 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ) → 𝑏 ∈ ℝ*)
16 elioo1 12768 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) ↔ (𝑥 ∈ ℝ*𝑎 < 𝑥𝑥 < 𝑏)))
1715, 16syldan 591 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ) → (𝑥 ∈ (𝑎(,)𝑏) ↔ (𝑥 ∈ ℝ*𝑎 < 𝑥𝑥 < 𝑏)))
1817biimpa 477 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ ℝ*𝑎 < 𝑥𝑥 < 𝑏))
1918simp3d 1138 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 < 𝑏)
20 rexr 10676 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21203anim1i 1146 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑏) → (𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏))
22 rexr 10676 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ*)
23 elico1 12771 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑥[,)𝑏) ↔ (𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏)))
2420, 22, 23syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥 ∈ (𝑥[,)𝑏) ↔ (𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏)))
2524biimprd 249 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑥 ∈ ℝ*𝑥𝑥𝑥 < 𝑏) → 𝑥 ∈ (𝑥[,)𝑏)))
268, 21, 25syl2im 40 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑏) → 𝑥 ∈ (𝑥[,)𝑏)))
27 icoreval 34503 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑥[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})
288, 27syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})
2928eleq2d 2903 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ (𝑥[,)𝑏) ↔ 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}))
3026, 29sylibd 240 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ((𝑥 ∈ ℝ ∧ 𝑥𝑥𝑥 < 𝑏) → 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}))
3112, 14, 19, 30mp3and 1457 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})
32 nfv 1908 . . . . . . . . . . . . . . . 16 𝑧((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏))
33 nfrab1 3390 . . . . . . . . . . . . . . . 16 𝑧{𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}
34 nfcv 2982 . . . . . . . . . . . . . . . 16 𝑧(𝑎(,)𝑏)
35 iooval 12752 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎(,)𝑏) = {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)})
3635eleq2d 2903 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)}))
3736anbi1d 629 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → ((𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}) ↔ (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})))
3837pm5.32i 575 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})))
39 rabid 3384 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ↔ (𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)))
40 rabid 3384 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))
4139, 40anbi12i 626 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}) ↔ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏))))
42 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑧 ∈ ℝ)
4342rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑧 ∈ ℝ*)
4443ad2antll 725 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ ℝ*)
45 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) → 𝑥 ∈ ℝ*)
4645, 43anim12i 612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏))) → (𝑥 ∈ ℝ*𝑧 ∈ ℝ*))
4746anim2i 616 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 ∈ ℝ* ∧ (𝑥 ∈ ℝ*𝑧 ∈ ℝ*)))
48 3anass 1089 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) ↔ (𝑎 ∈ ℝ* ∧ (𝑥 ∈ ℝ*𝑧 ∈ ℝ*)))
4947, 48sylibr 235 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*))
50 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) → 𝑎 < 𝑥)
51 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑥𝑧)
5250, 51anim12i 612 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏))) → (𝑎 < 𝑥𝑥𝑧))
5352adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 < 𝑥𝑥𝑧))
54 xrltletr 12540 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ*𝑥 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑎 < 𝑥𝑥𝑧) → 𝑎 < 𝑧))
5549, 53, 54sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑎 < 𝑧)
56 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)) → 𝑧 < 𝑏)
5756ad2antll 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 < 𝑏)
5855, 57jca 512 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎 < 𝑧𝑧 < 𝑏))
59 rabid 3384 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ* ∧ (𝑎 < 𝑧𝑧 < 𝑏)))
6044, 58, 59sylanbrc 583 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ* ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
6160adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
62 iooval 12752 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑎(,)𝑏) = {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
6362adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → (𝑎(,)𝑏) = {𝑧 ∈ ℝ* ∣ (𝑎 < 𝑧𝑧 < 𝑏)})
6461, 63eleqtrrd 2921 . . . . . . . . . . . . . . . . . . 19 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 ∈ ℝ* ∧ (𝑎 < 𝑥𝑥 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < 𝑏)))) → 𝑧 ∈ (𝑎(,)𝑏))
6541, 64sylan2b 593 . . . . . . . . . . . . . . . . . 18 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥𝑥 < 𝑏)} ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})) → 𝑧 ∈ (𝑎(,)𝑏))
6638, 65sylbi 218 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)})) → 𝑧 ∈ (𝑎(,)𝑏))
6766expr 457 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → 𝑧 ∈ (𝑎(,)𝑏)))
6832, 33, 34, 67ssrd 3976 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))
6922, 68sylanl2 677 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))
70 eleq2 2906 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → (𝑥𝑖𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)}))
71 sseq1 3996 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → (𝑖 ⊆ (𝑎(,)𝑏) ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏)))
7270, 71anbi12d 630 . . . . . . . . . . . . . . 15 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} → ((𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)) ↔ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))))
7372rspcev 3627 . . . . . . . . . . . . . 14 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∈ 𝐼 ∧ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑏)} ⊆ (𝑎(,)𝑏))) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
7411, 31, 69, 73syl12anc 834 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
7574ancom1s 649 . . . . . . . . . . . 12 (((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
7675expl 458 . . . . . . . . . . 11 (𝑏 ∈ ℝ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
777adantl 482 . . . . . . . . . . . . . . 15 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ ℝ)
78 peano2re 10802 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
799icoreelrn 34511 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∈ 𝐼)
8077, 78, 79syl2anc2 585 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∈ 𝐼)
81 elioore 12758 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑎(,)+∞) → 𝑥 ∈ ℝ)
8281adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥 ∈ ℝ)
8382leidd 11195 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥𝑥)
8482ltp1d 11559 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥 < (𝑥 + 1))
8582, 83, 84jca32 516 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑥 ∈ ℝ ∧ (𝑥𝑥𝑥 < (𝑥 + 1))))
86 breq2 5067 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑥 → (𝑥𝑧𝑥𝑥))
87 breq1 5066 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑥 → (𝑧 < (𝑥 + 1) ↔ 𝑥 < (𝑥 + 1)))
8886, 87anbi12d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑥 → ((𝑥𝑧𝑧 < (𝑥 + 1)) ↔ (𝑥𝑥𝑥 < (𝑥 + 1))))
8988elrab 3684 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ↔ (𝑥 ∈ ℝ ∧ (𝑥𝑥𝑥 < (𝑥 + 1))))
9085, 89sylibr 235 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))})
91 nfv 1908 . . . . . . . . . . . . . . . . . . 19 𝑧(𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞))
92 nfrab1 3390 . . . . . . . . . . . . . . . . . . 19 𝑧{𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))}
93 nfcv 2982 . . . . . . . . . . . . . . . . . . 19 𝑧(𝑎(,)+∞)
94 rabid 3384 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ↔ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1))))
95 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑧 ∈ ℝ)
96 simpll 763 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑎 ∈ ℝ*)
9782adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑥 ∈ ℝ)
9897rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑥 ∈ ℝ*)
9995rexrd 10680 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑧 ∈ ℝ*)
100 elioopnf 12821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℝ* → (𝑥 ∈ (𝑎(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑎 < 𝑥)))
101100simplbda 500 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → 𝑎 < 𝑥)
102101adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑎 < 𝑥)
103 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1))) → 𝑥𝑧)
104103adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑥𝑧)
10596, 98, 99, 102, 104xrltletrd 12544 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑎 < 𝑧)
106 elioopnf 12821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ ℝ* → (𝑧 ∈ (𝑎(,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑎 < 𝑧)))
107106biimprd 249 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ ℝ* → ((𝑧 ∈ ℝ ∧ 𝑎 < 𝑧) → 𝑧 ∈ (𝑎(,)+∞)))
108107adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → ((𝑧 ∈ ℝ ∧ 𝑎 < 𝑧) → 𝑧 ∈ (𝑎(,)+∞)))
109108adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → ((𝑧 ∈ ℝ ∧ 𝑎 < 𝑧) → 𝑧 ∈ (𝑎(,)+∞)))
11095, 105, 109mp2and 695 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) ∧ (𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1)))) → 𝑧 ∈ (𝑎(,)+∞))
111110ex 413 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → ((𝑧 ∈ ℝ ∧ (𝑥𝑧𝑧 < (𝑥 + 1))) → 𝑧 ∈ (𝑎(,)+∞)))
11294, 111syl5bi 243 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → 𝑧 ∈ (𝑎(,)+∞)))
11391, 92, 93, 112ssrd 3976 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞))
11490, 113jca 512 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞)))
115 oveq2 7156 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = +∞ → (𝑎(,)𝑏) = (𝑎(,)+∞))
116115eleq2d 2903 . . . . . . . . . . . . . . . . . . 19 (𝑏 = +∞ → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ (𝑎(,)+∞)))
117116anbi2d 628 . . . . . . . . . . . . . . . . . 18 (𝑏 = +∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) ↔ (𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞))))
118115sseq2d 4003 . . . . . . . . . . . . . . . . . . 19 (𝑏 = +∞ → ({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏) ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞)))
119118anbi2d 628 . . . . . . . . . . . . . . . . . 18 (𝑏 = +∞ → ((𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)) ↔ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞))))
120117, 119imbi12d 346 . . . . . . . . . . . . . . . . 17 (𝑏 = +∞ → (((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))) ↔ ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)+∞)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)+∞)))))
121114, 120mpbiri 259 . . . . . . . . . . . . . . . 16 (𝑏 = +∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))))
122121impl 456 . . . . . . . . . . . . . . 15 (((𝑏 = +∞ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)))
123122ancom1s 649 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)))
124 eleq2 2906 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → (𝑥𝑖𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))}))
125 sseq1 3996 . . . . . . . . . . . . . . . 16 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → (𝑖 ⊆ (𝑎(,)𝑏) ↔ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏)))
126124, 125anbi12d 630 . . . . . . . . . . . . . . 15 (𝑖 = {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} → ((𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)) ↔ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))))
127126rspcev 3627 . . . . . . . . . . . . . 14 (({𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∈ 𝐼 ∧ (𝑥 ∈ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ∧ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < (𝑥 + 1))} ⊆ (𝑎(,)𝑏))) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
12880, 123, 127syl2anc 584 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ*𝑏 = +∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
129128ancom1s 649 . . . . . . . . . . . 12 (((𝑏 = +∞ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
130129expl 458 . . . . . . . . . . 11 (𝑏 = +∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
1317adantl 482 . . . . . . . . . . . . . 14 (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → 𝑥 ∈ ℝ)
132 oveq2 7156 . . . . . . . . . . . . . . . . . . 19 (𝑏 = -∞ → (𝑎(,)𝑏) = (𝑎(,)-∞))
133132eleq2d 2903 . . . . . . . . . . . . . . . . . 18 (𝑏 = -∞ → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ (𝑎(,)-∞)))
134133adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℝ*𝑏 = -∞) → (𝑥 ∈ (𝑎(,)𝑏) ↔ 𝑥 ∈ (𝑎(,)-∞)))
135134pm5.32i 575 . . . . . . . . . . . . . . . 16 (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) ↔ ((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)-∞)))
136 nltmnf 12514 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
137136intnand 489 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ¬ (𝑎 < 𝑥𝑥 < -∞))
138 eliooord 12786 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)-∞) → (𝑎 < 𝑥𝑥 < -∞))
139137, 138nsyl 142 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ 𝑥 ∈ (𝑎(,)-∞))
140139pm2.21d 121 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑥 ∈ (𝑎(,)-∞) → ((𝑎 ∈ ℝ*𝑏 = -∞) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))))
141140impd 411 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((𝑥 ∈ (𝑎(,)-∞) ∧ (𝑎 ∈ ℝ*𝑏 = -∞)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
142141ancomsd 466 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)-∞)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
143135, 142syl5bi 243 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
14420, 143syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
145131, 144mpcom 38 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ*𝑏 = -∞) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
146145ancom1s 649 . . . . . . . . . . . 12 (((𝑏 = -∞ ∧ 𝑎 ∈ ℝ*) ∧ 𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))
147146expl 458 . . . . . . . . . . 11 (𝑏 = -∞ → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
14876, 130, 1473jaoi 1421 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∨ 𝑏 = +∞ ∨ 𝑏 = -∞) → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
1495, 148sylbi 218 . . . . . . . . 9 (𝑏 ∈ ℝ* → ((𝑎 ∈ ℝ*𝑥 ∈ (𝑎(,)𝑏)) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
150149expdimp 453 . . . . . . . 8 ((𝑏 ∈ ℝ*𝑎 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
151150ancoms 459 . . . . . . 7 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
152 eleq2 2906 . . . . . . . 8 (𝑜 = (𝑎(,)𝑏) → (𝑥𝑜𝑥 ∈ (𝑎(,)𝑏)))
153 sseq2 3997 . . . . . . . . . 10 (𝑜 = (𝑎(,)𝑏) → (𝑖𝑜𝑖 ⊆ (𝑎(,)𝑏)))
154153anbi2d 628 . . . . . . . . 9 (𝑜 = (𝑎(,)𝑏) → ((𝑥𝑖𝑖𝑜) ↔ (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
155154rexbidv 3302 . . . . . . . 8 (𝑜 = (𝑎(,)𝑏) → (∃𝑖𝐼 (𝑥𝑖𝑖𝑜) ↔ ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏))))
156152, 155imbi12d 346 . . . . . . 7 (𝑜 = (𝑎(,)𝑏) → ((𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)) ↔ (𝑥 ∈ (𝑎(,)𝑏) → ∃𝑖𝐼 (𝑥𝑖𝑖 ⊆ (𝑎(,)𝑏)))))
157151, 156syl5ibrcom 248 . . . . . 6 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑜 = (𝑎(,)𝑏) → (𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))))
158157rexlimivv 3297 . . . . 5 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑜 = (𝑎(,)𝑏) → (𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
1594, 158sylbi 218 . . . 4 (𝑜 ∈ ran (,) → (𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
160159rgen 3153 . . 3 𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))
161160rgenw 3155 . 2 𝑥 ∈ ℝ ∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))
162 iooex 12751 . . . . 5 (,) ∈ V
163162rnex 7605 . . . 4 ran (,) ∈ V
164 unirnioo 12827 . . . . 5 ℝ = ran (,)
1659icoreunrn 34509 . . . . 5 ℝ = 𝐼
166164, 165eqtr3i 2851 . . . 4 ran (,) = 𝐼
167 tgss2 21511 . . . 4 ((ran (,) ∈ V ∧ ran (,) = 𝐼) → ((topGen‘ran (,)) ⊆ (topGen‘𝐼) ↔ ∀𝑥 ran (,)∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜))))
168163, 166, 167mp2an 688 . . 3 ((topGen‘ran (,)) ⊆ (topGen‘𝐼) ↔ ∀𝑥 ran (,)∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
169164raleqi 3419 . . 3 (∀𝑥 ∈ ℝ ∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)) ↔ ∀𝑥 ran (,)∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
170168, 169bitr4i 279 . 2 ((topGen‘ran (,)) ⊆ (topGen‘𝐼) ↔ ∀𝑥 ∈ ℝ ∀𝑜 ∈ ran (,)(𝑥𝑜 → ∃𝑖𝐼 (𝑥𝑖𝑖𝑜)))
171161, 170mpbir 232 1 (topGen‘ran (,)) ⊆ (topGen‘𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3o 1080  w3a 1081   = wceq 1530  wcel 2107  wral 3143  wrex 3144  {crab 3147  Vcvv 3500  wss 3940  𝒫 cpw 4542   cuni 4837   class class class wbr 5063   × cxp 5552  ran crn 5555  cima 5557   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  cr 10525  1c1 10527   + caddc 10529  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12728  [,)cico 12730  topGenctg 16701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-ioo 12732  df-ico 12734  df-topgen 16707
This theorem is referenced by:  relowlpssretop  34514
  Copyright terms: Public domain W3C validator