MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leltadd Structured version   Visualization version   GIF version

Theorem leltadd 11699
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
leltadd (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))

Proof of Theorem leltadd
StepHypRef Expression
1 ltleadd 11698 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐵 < 𝐷𝐴𝐶) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
21ancomsd 465 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
32ancom2s 647 . . 3 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
43ancom1s 650 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐵 + 𝐴) < (𝐷 + 𝐶)))
5 recn 11199 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
6 recn 11199 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
7 addcom 11401 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
85, 6, 7syl2an 595 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
9 recn 11199 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
10 recn 11199 . . . 4 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
11 addcom 11401 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
129, 10, 11syl2an 595 . . 3 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 + 𝐷) = (𝐷 + 𝐶))
138, 12breqan12d 5157 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + 𝐵) < (𝐶 + 𝐷) ↔ (𝐵 + 𝐴) < (𝐷 + 𝐶)))
144, 13sylibrd 259 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵 < 𝐷) → (𝐴 + 𝐵) < (𝐶 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098   class class class wbr 5141  (class class class)co 7404  cc 11107  cr 11108   + caddc 11112   < clt 11249  cle 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255
This theorem is referenced by:  lt2add  11700  addgegt0  11702  leltaddd  11837  fldiv  13828  dp2lt10  32552
  Copyright terms: Public domain W3C validator