Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frinfm Structured version   Visualization version   GIF version

Theorem frinfm 34542
Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
frinfm ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem frinfm
StepHypRef Expression
1 fri 5405 . . . . 5 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
21ancom1s 649 . . . 4 (((𝑅 Fr 𝐴𝐵𝐶) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
32exp43 437 . . 3 (𝑅 Fr 𝐴 → (𝐵𝐶 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))))
433imp2 1342 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5 ssel2 3884 . . . . . . . 8 ((𝐵𝐴𝑥𝐵) → 𝑥𝐴)
65adantrr 713 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → 𝑥𝐴)
7 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
8 vex 3440 . . . . . . . . . . . 12 𝑦 ∈ V
97, 8brcnv 5639 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
109biimpi 217 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
1110con3i 157 . . . . . . . . 9 𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦)
1211ralimi 3127 . . . . . . . 8 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
1312ad2antll 725 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
14 breq2 4966 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1514rspcev 3559 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑅𝑥) → ∃𝑧𝐵 𝑦𝑅𝑧)
1615ex 413 . . . . . . . . 9 (𝑥𝐵 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1716ralrimivw 3150 . . . . . . . 8 (𝑥𝐵 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1817ad2antrl 724 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
196, 13, 18jca32 516 . . . . . 6 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2019ex 413 . . . . 5 (𝐵𝐴 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))))
2120reximdv2 3234 . . . 4 (𝐵𝐴 → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2221adantl 482 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
23223ad2antr2 1182 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
244, 23mpd 15 1 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080  wcel 2081  wne 2984  wral 3105  wrex 3106  wss 3859  c0 4211   class class class wbr 4962   Fr wfr 5399  ccnv 5442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-fr 5402  df-cnv 5451
This theorem is referenced by:  welb  34543
  Copyright terms: Public domain W3C validator