Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frinfm Structured version   Visualization version   GIF version

Theorem frinfm 37764
Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
frinfm ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐶(𝑧)

Proof of Theorem frinfm
StepHypRef Expression
1 fri 5616 . . . . 5 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
21ancom1s 653 . . . 4 (((𝑅 Fr 𝐴𝐵𝐶) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
32exp43 436 . . 3 (𝑅 Fr 𝐴 → (𝐵𝐶 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))))
433imp2 1350 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5 ssel2 3958 . . . . . . . 8 ((𝐵𝐴𝑥𝐵) → 𝑥𝐴)
65adantrr 717 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → 𝑥𝐴)
7 vex 3468 . . . . . . . . . . . 12 𝑥 ∈ V
8 vex 3468 . . . . . . . . . . . 12 𝑦 ∈ V
97, 8brcnv 5867 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
109biimpi 216 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
1110con3i 154 . . . . . . . . 9 𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦)
1211ralimi 3074 . . . . . . . 8 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
1312ad2antll 729 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
14 breq2 5128 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1514rspcev 3606 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑅𝑥) → ∃𝑧𝐵 𝑦𝑅𝑧)
1615ex 412 . . . . . . . . 9 (𝑥𝐵 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1716ralrimivw 3137 . . . . . . . 8 (𝑥𝐵 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1817ad2antrl 728 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
196, 13, 18jca32 515 . . . . . 6 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2019ex 412 . . . . 5 (𝐵𝐴 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))))
2120reximdv2 3151 . . . 4 (𝐵𝐴 → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2221adantl 481 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
23223ad2antr2 1190 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
244, 23mpd 15 1 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109  wne 2933  wral 3052  wrex 3061  wss 3931  c0 4313   class class class wbr 5124   Fr wfr 5608  ccnv 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-fr 5611  df-cnv 5667
This theorem is referenced by:  welb  37765
  Copyright terms: Public domain W3C validator