Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frinfm Structured version   Visualization version   GIF version

Theorem frinfm 33861
Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
frinfm ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem frinfm
StepHypRef Expression
1 fri 5212 . . . . 5 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
21ancom1s 632 . . . 4 (((𝑅 Fr 𝐴𝐵𝐶) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
32exp43 423 . . 3 (𝑅 Fr 𝐴 → (𝐵𝐶 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))))
433imp2 1442 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5 ssel2 3747 . . . . . . . 8 ((𝐵𝐴𝑥𝐵) → 𝑥𝐴)
65adantrr 696 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → 𝑥𝐴)
7 vex 3354 . . . . . . . . . . . 12 𝑥 ∈ V
8 vex 3354 . . . . . . . . . . . 12 𝑦 ∈ V
97, 8brcnv 5442 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
109biimpi 206 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
1110con3i 151 . . . . . . . . 9 𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦)
1211ralimi 3101 . . . . . . . 8 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
1312ad2antll 708 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
14 breq2 4791 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1514rspcev 3460 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑅𝑥) → ∃𝑧𝐵 𝑦𝑅𝑧)
1615ex 397 . . . . . . . . 9 (𝑥𝐵 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1716ralrimivw 3116 . . . . . . . 8 (𝑥𝐵 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1817ad2antrl 707 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
196, 13, 18jca32 505 . . . . . 6 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2019ex 397 . . . . 5 (𝐵𝐴 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))))
2120reximdv2 3162 . . . 4 (𝐵𝐴 → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2221adantl 467 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
23223ad2antr2 1204 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
244, 23mpd 15 1 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071  wcel 2145  wne 2943  wral 3061  wrex 3062  wss 3723  c0 4063   class class class wbr 4787   Fr wfr 5206  ccnv 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-br 4788  df-opab 4848  df-fr 5209  df-cnv 5258
This theorem is referenced by:  welb  33862
  Copyright terms: Public domain W3C validator