Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frinfm Structured version   Visualization version   GIF version

Theorem frinfm 37695
Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
frinfm ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐶(𝑧)

Proof of Theorem frinfm
StepHypRef Expression
1 fri 5657 . . . . 5 (((𝐵𝐶𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
21ancom1s 652 . . . 4 (((𝑅 Fr 𝐴𝐵𝐶) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
32exp43 436 . . 3 (𝑅 Fr 𝐴 → (𝐵𝐶 → (𝐵𝐴 → (𝐵 ≠ ∅ → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥))))
433imp2 1349 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5 ssel2 4003 . . . . . . . 8 ((𝐵𝐴𝑥𝐵) → 𝑥𝐴)
65adantrr 716 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → 𝑥𝐴)
7 vex 3492 . . . . . . . . . . . 12 𝑥 ∈ V
8 vex 3492 . . . . . . . . . . . 12 𝑦 ∈ V
97, 8brcnv 5907 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
109biimpi 216 . . . . . . . . . 10 (𝑥𝑅𝑦𝑦𝑅𝑥)
1110con3i 154 . . . . . . . . 9 𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦)
1211ralimi 3089 . . . . . . . 8 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
1312ad2antll 728 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐵 ¬ 𝑥𝑅𝑦)
14 breq2 5170 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1514rspcev 3635 . . . . . . . . . 10 ((𝑥𝐵𝑦𝑅𝑥) → ∃𝑧𝐵 𝑦𝑅𝑧)
1615ex 412 . . . . . . . . 9 (𝑥𝐵 → (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1716ralrimivw 3156 . . . . . . . 8 (𝑥𝐵 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
1817ad2antrl 727 . . . . . . 7 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))
196, 13, 18jca32 515 . . . . . 6 ((𝐵𝐴 ∧ (𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2019ex 412 . . . . 5 (𝐵𝐴 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) → (𝑥𝐴 ∧ (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))))
2120reximdv2 3170 . . . 4 (𝐵𝐴 → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
2221adantl 481 . . 3 ((𝑅 Fr 𝐴𝐵𝐴) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
23223ad2antr2 1189 . 2 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
244, 23mpd 15 1 ((𝑅 Fr 𝐴 ∧ (𝐵𝐶𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166   Fr wfr 5649  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-fr 5652  df-cnv 5708
This theorem is referenced by:  welb  37696
  Copyright terms: Public domain W3C validator