Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzmul Structured version   Visualization version   GIF version

Theorem fzmul 37748
Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzmul ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))

Proof of Theorem fzmul
StepHypRef Expression
1 elfz1 13552 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
213adant3 1133 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
3 zre 12617 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12617 . . . . . . . . . . . 12 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
5 nnre 12273 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
6 nngt0 12297 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 0 < 𝐾)
75, 6jca 511 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℝ ∧ 0 < 𝐾))
8 lemul2 12120 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
93, 4, 7, 8syl3an 1161 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1093expa 1119 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1110biimpd 229 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1211adantllr 719 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
13 zre 12617 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 lemul2 12120 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
154, 13, 7, 14syl3an 1161 . . . . . . . . . . . 12 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
16153expa 1119 . . . . . . . . . . 11 (((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1716ancom1s 653 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1817biimpd 229 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1918adantlll 718 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
2012, 19anim12d 609 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
21 zmulcl 12666 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2221ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 · 𝑀) ∈ ℤ))
23 zmulcl 12666 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
2423ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑁 ∈ ℤ → (𝐾 · 𝑁) ∈ ℤ))
25 zmulcl 12666 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 · 𝐽) ∈ ℤ)
2625ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝐽 ∈ ℤ → (𝐾 · 𝐽) ∈ ℤ))
2722, 24, 263anim123d 1445 . . . . . . . . . . 11 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ)))
28 elfz 13553 . . . . . . . . . . . 12 (((𝐾 · 𝐽) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
29283coml 1128 . . . . . . . . . . 11 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3027, 29syl6 35 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
31 nnz 12634 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
3230, 31syl11 33 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
33323expa 1119 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
3433imp 406 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3520, 34sylibrd 259 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3635an32s 652 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) ∧ 𝐽 ∈ ℤ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3736exp4b 430 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ ℤ → (𝑀𝐽 → (𝐽𝑁 → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))))
38373impd 1349 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
39383impa 1110 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
402, 39sylbid 240 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108   class class class wbr 5143  (class class class)co 7431  cr 11154  0cc0 11155   · cmul 11160   < clt 11295  cle 11296  cn 12266  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-fz 13548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator