Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzmul Structured version   Visualization version   GIF version

Theorem fzmul 37804
Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzmul ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))

Proof of Theorem fzmul
StepHypRef Expression
1 elfz1 13416 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
213adant3 1132 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
3 zre 12481 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12481 . . . . . . . . . . . 12 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
5 nnre 12141 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
6 nngt0 12165 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 0 < 𝐾)
75, 6jca 511 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℝ ∧ 0 < 𝐾))
8 lemul2 11983 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
93, 4, 7, 8syl3an 1160 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1093expa 1118 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1110biimpd 229 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1211adantllr 719 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
13 zre 12481 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 lemul2 11983 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
154, 13, 7, 14syl3an 1160 . . . . . . . . . . . 12 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
16153expa 1118 . . . . . . . . . . 11 (((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1716ancom1s 653 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1817biimpd 229 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1918adantlll 718 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
2012, 19anim12d 609 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
21 zmulcl 12529 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2221ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 · 𝑀) ∈ ℤ))
23 zmulcl 12529 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
2423ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑁 ∈ ℤ → (𝐾 · 𝑁) ∈ ℤ))
25 zmulcl 12529 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 · 𝐽) ∈ ℤ)
2625ex 412 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝐽 ∈ ℤ → (𝐾 · 𝐽) ∈ ℤ))
2722, 24, 263anim123d 1445 . . . . . . . . . . 11 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ)))
28 elfz 13417 . . . . . . . . . . . 12 (((𝐾 · 𝐽) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
29283coml 1127 . . . . . . . . . . 11 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3027, 29syl6 35 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
31 nnz 12498 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
3230, 31syl11 33 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
33323expa 1118 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
3433imp 406 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3520, 34sylibrd 259 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3635an32s 652 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) ∧ 𝐽 ∈ ℤ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3736exp4b 430 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ ℤ → (𝑀𝐽 → (𝐽𝑁 → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))))
38373impd 1349 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
39383impa 1109 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
402, 39sylbid 240 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113   class class class wbr 5095  (class class class)co 7354  cr 11014  0cc0 11015   · cmul 11020   < clt 11155  cle 11156  cn 12134  cz 12477  ...cfz 13411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-fz 13412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator