Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzmul Structured version   Visualization version   GIF version

Theorem fzmul 36055
Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzmul ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))

Proof of Theorem fzmul
StepHypRef Expression
1 elfz1 13346 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
213adant3 1131 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
3 zre 12425 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12425 . . . . . . . . . . . 12 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
5 nnre 12082 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
6 nngt0 12106 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 0 < 𝐾)
75, 6jca 512 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℝ ∧ 0 < 𝐾))
8 lemul2 11930 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
93, 4, 7, 8syl3an 1159 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1093expa 1117 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1110biimpd 228 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1211adantllr 716 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
13 zre 12425 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 lemul2 11930 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
154, 13, 7, 14syl3an 1159 . . . . . . . . . . . 12 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
16153expa 1117 . . . . . . . . . . 11 (((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1716ancom1s 650 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1817biimpd 228 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1918adantlll 715 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
2012, 19anim12d 609 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
21 zmulcl 12471 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2221ex 413 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 · 𝑀) ∈ ℤ))
23 zmulcl 12471 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
2423ex 413 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑁 ∈ ℤ → (𝐾 · 𝑁) ∈ ℤ))
25 zmulcl 12471 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 · 𝐽) ∈ ℤ)
2625ex 413 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝐽 ∈ ℤ → (𝐾 · 𝐽) ∈ ℤ))
2722, 24, 263anim123d 1442 . . . . . . . . . . 11 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ)))
28 elfz 13347 . . . . . . . . . . . 12 (((𝐾 · 𝐽) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
29283coml 1126 . . . . . . . . . . 11 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3027, 29syl6 35 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
31 nnz 12444 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
3230, 31syl11 33 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
33323expa 1117 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
3433imp 407 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3520, 34sylibrd 258 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3635an32s 649 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) ∧ 𝐽 ∈ ℤ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3736exp4b 431 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ ℤ → (𝑀𝐽 → (𝐽𝑁 → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))))
38373impd 1347 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
39383impa 1109 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
402, 39sylbid 239 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2105   class class class wbr 5093  (class class class)co 7338  cr 10972  0cc0 10973   · cmul 10978   < clt 11111  cle 11112  cn 12075  cz 12421  ...cfz 13341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-n0 12336  df-z 12422  df-fz 13342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator