Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzmul Structured version   Visualization version   GIF version

Theorem fzmul 33869
Description: Membership of a product in a finite interval of integers. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzmul ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))

Proof of Theorem fzmul
StepHypRef Expression
1 elfz1 12538 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
213adant3 1126 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) ↔ (𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁)))
3 zre 11583 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 11583 . . . . . . . . . . . 12 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
5 nnre 11229 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
6 nngt0 11251 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 0 < 𝐾)
75, 6jca 501 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (𝐾 ∈ ℝ ∧ 0 < 𝐾))
8 lemul2 11078 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
93, 4, 7, 8syl3an 1163 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1093expa 1111 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 ↔ (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1110biimpd 219 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
1211adantllr 698 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝑀𝐽 → (𝐾 · 𝑀) ≤ (𝐾 · 𝐽)))
13 zre 11583 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 lemul2 11078 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 < 𝐾)) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
154, 13, 7, 14syl3an 1163 . . . . . . . . . . . 12 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
16153expa 1111 . . . . . . . . . . 11 (((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1716ancom1s 632 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 ↔ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1817biimpd 219 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
1918adantlll 697 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽𝑁 → (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))
2012, 19anim12d 596 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
21 zmulcl 11628 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
2221ex 397 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 · 𝑀) ∈ ℤ))
23 zmulcl 11628 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
2423ex 397 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝑁 ∈ ℤ → (𝐾 · 𝑁) ∈ ℤ))
25 zmulcl 11628 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 · 𝐽) ∈ ℤ)
2625ex 397 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → (𝐽 ∈ ℤ → (𝐾 · 𝐽) ∈ ℤ))
2722, 24, 263anim123d 1554 . . . . . . . . . . 11 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ)))
28 elfz 12539 . . . . . . . . . . . 12 (((𝐾 · 𝐽) ∈ ℤ ∧ (𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
29283coml 1121 . . . . . . . . . . 11 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝐾 · 𝐽) ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3027, 29syl6 35 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
31 nnz 11601 . . . . . . . . . 10 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
3230, 31syl11 33 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
33323expa 1111 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) → (𝐾 ∈ ℕ → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁)))))
3433imp 393 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁)) ↔ ((𝐾 · 𝑀) ≤ (𝐾 · 𝐽) ∧ (𝐾 · 𝐽) ≤ (𝐾 · 𝑁))))
3520, 34sylibrd 249 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐽 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3635an32s 631 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) ∧ 𝐽 ∈ ℤ) → ((𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
3736exp4b 417 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ ℤ → (𝑀𝐽 → (𝐽𝑁 → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))))
38373impd 1441 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
39383impa 1100 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((𝐽 ∈ ℤ ∧ 𝑀𝐽𝐽𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
402, 39sylbid 230 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝐽 ∈ (𝑀...𝑁) → (𝐾 · 𝐽) ∈ ((𝐾 · 𝑀)...(𝐾 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wcel 2145   class class class wbr 4786  (class class class)co 6793  cr 10137  0cc0 10138   · cmul 10143   < clt 10276  cle 10277  cn 11222  cz 11579  ...cfz 12533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-fz 12534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator