Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > chirredlem4 | Structured version Visualization version GIF version |
Description: Lemma for chirredi 30475. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chirred.1 | ⊢ 𝐴 ∈ Cℋ |
chirred.2 | ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) |
Ref | Expression |
---|---|
chirredlem4 | ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 = 𝑝 ∨ 𝑟 = 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atelch 30425 | . . . . 5 ⊢ (𝑟 ∈ HAtoms → 𝑟 ∈ Cℋ ) | |
2 | breq2 5057 | . . . . . 6 ⊢ (𝑥 = 𝑟 → (𝐴 𝐶ℋ 𝑥 ↔ 𝐴 𝐶ℋ 𝑟)) | |
3 | chirred.2 | . . . . . 6 ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) | |
4 | 2, 3 | vtoclga 3489 | . . . . 5 ⊢ (𝑟 ∈ Cℋ → 𝐴 𝐶ℋ 𝑟) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝑟 ∈ HAtoms → 𝐴 𝐶ℋ 𝑟) |
6 | chirred.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
7 | 6 | atordi 30465 | . . . 4 ⊢ ((𝑟 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝑟) → (𝑟 ⊆ 𝐴 ∨ 𝑟 ⊆ (⊥‘𝐴))) |
8 | 5, 7 | mpdan 687 | . . 3 ⊢ (𝑟 ∈ HAtoms → (𝑟 ⊆ 𝐴 ∨ 𝑟 ⊆ (⊥‘𝐴))) |
9 | 8 | ad2antrl 728 | . 2 ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ 𝐴 ∨ 𝑟 ⊆ (⊥‘𝐴))) |
10 | 6, 3 | chirredlem3 30473 | . . 3 ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ 𝐴 → 𝑟 = 𝑝)) |
11 | 6 | ococi 29486 | . . . . . . . 8 ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
12 | 11 | sseq2i 3930 | . . . . . . 7 ⊢ (𝑝 ⊆ (⊥‘(⊥‘𝐴)) ↔ 𝑝 ⊆ 𝐴) |
13 | 12 | biimpri 231 | . . . . . 6 ⊢ (𝑝 ⊆ 𝐴 → 𝑝 ⊆ (⊥‘(⊥‘𝐴))) |
14 | atelch 30425 | . . . . . . . . . . 11 ⊢ (𝑞 ∈ HAtoms → 𝑞 ∈ Cℋ ) | |
15 | atelch 30425 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ HAtoms → 𝑝 ∈ Cℋ ) | |
16 | chjcom 29587 | . . . . . . . . . . 11 ⊢ ((𝑞 ∈ Cℋ ∧ 𝑝 ∈ Cℋ ) → (𝑞 ∨ℋ 𝑝) = (𝑝 ∨ℋ 𝑞)) | |
17 | 14, 15, 16 | syl2an 599 | . . . . . . . . . 10 ⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑞 ∨ℋ 𝑝) = (𝑝 ∨ℋ 𝑞)) |
18 | 17 | sseq2d 3933 | . . . . . . . . 9 ⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → (𝑟 ⊆ (𝑞 ∨ℋ 𝑝) ↔ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) |
19 | 18 | anbi2d 632 | . . . . . . . 8 ⊢ ((𝑞 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)) ↔ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞)))) |
20 | 19 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑝 ∈ HAtoms ∧ 𝑝 ⊆ (⊥‘(⊥‘𝐴)))) → ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)) ↔ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞)))) |
21 | 6 | choccli 29388 | . . . . . . . . 9 ⊢ (⊥‘𝐴) ∈ Cℋ |
22 | cmcm3 29696 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝐴 𝐶ℋ 𝑥 ↔ (⊥‘𝐴) 𝐶ℋ 𝑥)) | |
23 | 6, 22 | mpan 690 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (𝐴 𝐶ℋ 𝑥 ↔ (⊥‘𝐴) 𝐶ℋ 𝑥)) |
24 | 3, 23 | mpbid 235 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (⊥‘𝐴) 𝐶ℋ 𝑥) |
25 | 21, 24 | chirredlem3 30473 | . . . . . . . 8 ⊢ ((((𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑝 ∈ HAtoms ∧ 𝑝 ⊆ (⊥‘(⊥‘𝐴)))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑞 ∨ℋ 𝑝))) → (𝑟 ⊆ (⊥‘𝐴) → 𝑟 = 𝑞)) |
26 | 25 | ex 416 | . . . . . . 7 ⊢ (((𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑝 ∈ HAtoms ∧ 𝑝 ⊆ (⊥‘(⊥‘𝐴)))) → ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑞 ∨ℋ 𝑝)) → (𝑟 ⊆ (⊥‘𝐴) → 𝑟 = 𝑞))) |
27 | 20, 26 | sylbird 263 | . . . . . 6 ⊢ (((𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑝 ∈ HAtoms ∧ 𝑝 ⊆ (⊥‘(⊥‘𝐴)))) → ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞)) → (𝑟 ⊆ (⊥‘𝐴) → 𝑟 = 𝑞))) |
28 | 13, 27 | sylanr2 683 | . . . . 5 ⊢ (((𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴)) → ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞)) → (𝑟 ⊆ (⊥‘𝐴) → 𝑟 = 𝑞))) |
29 | 28 | imp 410 | . . . 4 ⊢ ((((𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴)) ∧ (𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴)) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ (⊥‘𝐴) → 𝑟 = 𝑞)) |
30 | 29 | ancom1s 653 | . . 3 ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ (⊥‘𝐴) → 𝑟 = 𝑞)) |
31 | 10, 30 | orim12d 965 | . 2 ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → ((𝑟 ⊆ 𝐴 ∨ 𝑟 ⊆ (⊥‘𝐴)) → (𝑟 = 𝑝 ∨ 𝑟 = 𝑞))) |
32 | 9, 31 | mpd 15 | 1 ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 = 𝑝 ∨ 𝑟 = 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Cℋ cch 29010 ⊥cort 29011 ∨ℋ chj 29014 𝐶ℋ ccm 29017 HAtomscat 29046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cc 10049 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 ax-hilex 29080 ax-hfvadd 29081 ax-hvcom 29082 ax-hvass 29083 ax-hv0cl 29084 ax-hvaddid 29085 ax-hfvmul 29086 ax-hvmulid 29087 ax-hvmulass 29088 ax-hvdistr1 29089 ax-hvdistr2 29090 ax-hvmul0 29091 ax-hfi 29160 ax-his1 29163 ax-his2 29164 ax-his3 29165 ax-his4 29166 ax-hcompl 29283 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-oadd 8206 df-omul 8207 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-acn 9558 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-rlim 15050 df-sum 15250 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-pt 16949 df-prds 16952 df-xrs 17007 df-qtop 17012 df-imas 17013 df-xps 17015 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-fbas 20360 df-fg 20361 df-cnfld 20364 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-cld 21916 df-ntr 21917 df-cls 21918 df-nei 21995 df-cn 22124 df-cnp 22125 df-lm 22126 df-haus 22212 df-tx 22459 df-hmeo 22652 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-xms 23218 df-ms 23219 df-tms 23220 df-cfil 24152 df-cau 24153 df-cmet 24154 df-grpo 28574 df-gid 28575 df-ginv 28576 df-gdiv 28577 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-vs 28680 df-nmcv 28681 df-ims 28682 df-dip 28782 df-ssp 28803 df-ph 28894 df-cbn 28944 df-hnorm 29049 df-hba 29050 df-hvsub 29052 df-hlim 29053 df-hcau 29054 df-sh 29288 df-ch 29302 df-oc 29333 df-ch0 29334 df-shs 29389 df-span 29390 df-chj 29391 df-chsup 29392 df-pjh 29476 df-cm 29664 df-cv 30360 df-at 30419 |
This theorem is referenced by: chirredi 30475 |
Copyright terms: Public domain | W3C validator |