![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpnnen3 | Structured version Visualization version GIF version |
Description: Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
rpnnen3 | ⊢ ℝ ≼ 𝒫 ℚ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qex 13026 | . . 3 ⊢ ℚ ∈ V | |
2 | 1 | pwex 5398 | . 2 ⊢ 𝒫 ℚ ∈ V |
3 | ssrab2 4103 | . . . . 5 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ | |
4 | 1 | elpw2 5352 | . . . . 5 ⊢ ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ ↔ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ) |
5 | 3, 4 | mpbir 231 | . . . 4 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑎 ∈ ℝ → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ) |
7 | lttri2 11372 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) | |
8 | rpnnen3lem 42988 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | |
9 | rpnnen3lem 42988 | . . . . . . . . . 10 ⊢ (((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) | |
10 | 9 | ancom1s 652 | . . . . . . . . 9 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) |
11 | 10 | necomd 3002 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
12 | 8, 11 | jaodan 958 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
13 | 12 | ex 412 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 < 𝑏 ∨ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
14 | 7, 13 | sylbid 240 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
15 | 14 | necon4d 2970 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} → 𝑎 = 𝑏)) |
16 | breq2 5170 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑐 < 𝑎 ↔ 𝑐 < 𝑏)) | |
17 | 16 | rabbidv 3451 | . . . 4 ⊢ (𝑎 = 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
18 | 15, 17 | impbid1 225 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ↔ 𝑎 = 𝑏)) |
19 | 6, 18 | dom2 9055 | . 2 ⊢ (𝒫 ℚ ∈ V → ℝ ≼ 𝒫 ℚ) |
20 | 2, 19 | ax-mp 5 | 1 ⊢ ℝ ≼ 𝒫 ℚ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ≼ cdom 9001 ℝcr 11183 < clt 11324 ℚcq 13013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |