![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpnnen3 | Structured version Visualization version GIF version |
Description: Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
rpnnen3 | ⊢ ℝ ≼ 𝒫 ℚ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qex 12168 | . . 3 ⊢ ℚ ∈ V | |
2 | 1 | pwex 5128 | . 2 ⊢ 𝒫 ℚ ∈ V |
3 | ssrab2 3942 | . . . . 5 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ | |
4 | 1 | elpw2 5098 | . . . . 5 ⊢ ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ ↔ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ) |
5 | 3, 4 | mpbir 223 | . . . 4 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑎 ∈ ℝ → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ) |
7 | lttri2 10515 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) | |
8 | rpnnen3lem 38969 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | |
9 | rpnnen3lem 38969 | . . . . . . . . . 10 ⊢ (((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) | |
10 | 9 | ancom1s 640 | . . . . . . . . 9 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) |
11 | 10 | necomd 3016 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
12 | 8, 11 | jaodan 940 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
13 | 12 | ex 405 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 < 𝑏 ∨ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
14 | 7, 13 | sylbid 232 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
15 | 14 | necon4d 2985 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} → 𝑎 = 𝑏)) |
16 | breq2 4927 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑐 < 𝑎 ↔ 𝑐 < 𝑏)) | |
17 | 16 | rabbidv 3397 | . . . 4 ⊢ (𝑎 = 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
18 | 15, 17 | impbid1 217 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ↔ 𝑎 = 𝑏)) |
19 | 6, 18 | dom2 8341 | . 2 ⊢ (𝒫 ℚ ∈ V → ℝ ≼ 𝒫 ℚ) |
20 | 2, 19 | ax-mp 5 | 1 ⊢ ℝ ≼ 𝒫 ℚ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 {crab 3086 Vcvv 3409 ⊆ wss 3825 𝒫 cpw 4416 class class class wbr 4923 ≼ cdom 8296 ℝcr 10326 < clt 10466 ℚcq 12155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-sup 8693 df-inf 8694 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-n0 11701 df-z 11787 df-uz 12052 df-q 12156 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |