| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rpnnen3 | Structured version Visualization version GIF version | ||
| Description: Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| rpnnen3 | ⊢ ℝ ≼ 𝒫 ℚ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qex 12896 | . . 3 ⊢ ℚ ∈ V | |
| 2 | 1 | pwex 5330 | . 2 ⊢ 𝒫 ℚ ∈ V |
| 3 | ssrab2 4039 | . . . . 5 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ | |
| 4 | 1 | elpw2 5284 | . . . . 5 ⊢ ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ ↔ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ) |
| 5 | 3, 4 | mpbir 231 | . . . 4 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝑎 ∈ ℝ → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ) |
| 7 | lttri2 11232 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) | |
| 8 | rpnnen3lem 43013 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | |
| 9 | rpnnen3lem 43013 | . . . . . . . . . 10 ⊢ (((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) | |
| 10 | 9 | ancom1s 653 | . . . . . . . . 9 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) |
| 11 | 10 | necomd 2980 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
| 12 | 8, 11 | jaodan 959 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
| 13 | 12 | ex 412 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 < 𝑏 ∨ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
| 14 | 7, 13 | sylbid 240 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
| 15 | 14 | necon4d 2949 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} → 𝑎 = 𝑏)) |
| 16 | breq2 5106 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑐 < 𝑎 ↔ 𝑐 < 𝑏)) | |
| 17 | 16 | rabbidv 3410 | . . . 4 ⊢ (𝑎 = 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
| 18 | 15, 17 | impbid1 225 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ↔ 𝑎 = 𝑏)) |
| 19 | 6, 18 | dom2 8943 | . 2 ⊢ (𝒫 ℚ ∈ V → ℝ ≼ 𝒫 ℚ) |
| 20 | 2, 19 | ax-mp 5 | 1 ⊢ ℝ ≼ 𝒫 ℚ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 class class class wbr 5102 ≼ cdom 8893 ℝcr 11043 < clt 11184 ℚcq 12883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |