Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpnnen3 | Structured version Visualization version GIF version |
Description: Dedekind cut injection of ℝ into 𝒫 ℚ. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
Ref | Expression |
---|---|
rpnnen3 | ⊢ ℝ ≼ 𝒫 ℚ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qex 12794 | . . 3 ⊢ ℚ ∈ V | |
2 | 1 | pwex 5320 | . 2 ⊢ 𝒫 ℚ ∈ V |
3 | ssrab2 4024 | . . . . 5 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ | |
4 | 1 | elpw2 5286 | . . . . 5 ⊢ ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ ↔ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ⊆ ℚ) |
5 | 3, 4 | mpbir 230 | . . . 4 ⊢ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑎 ∈ ℝ → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ∈ 𝒫 ℚ) |
7 | lttri2 11150 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) | |
8 | rpnnen3lem 41104 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑎 < 𝑏) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) | |
9 | rpnnen3lem 41104 | . . . . . . . . . 10 ⊢ (((𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) | |
10 | 9 | ancom1s 650 | . . . . . . . . 9 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎}) |
11 | 10 | necomd 2996 | . . . . . . . 8 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
12 | 8, 11 | jaodan 955 | . . . . . . 7 ⊢ (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎)) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
13 | 12 | ex 413 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑎 < 𝑏 ∨ 𝑏 < 𝑎) → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
14 | 7, 13 | sylbid 239 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} ≠ {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏})) |
15 | 14 | necon4d 2964 | . . . 4 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} → 𝑎 = 𝑏)) |
16 | breq2 5093 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑐 < 𝑎 ↔ 𝑐 < 𝑏)) | |
17 | 16 | rabbidv 3411 | . . . 4 ⊢ (𝑎 = 𝑏 → {𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏}) |
18 | 15, 17 | impbid1 224 | . . 3 ⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ({𝑐 ∈ ℚ ∣ 𝑐 < 𝑎} = {𝑐 ∈ ℚ ∣ 𝑐 < 𝑏} ↔ 𝑎 = 𝑏)) |
19 | 6, 18 | dom2 8848 | . 2 ⊢ (𝒫 ℚ ∈ V → ℝ ≼ 𝒫 ℚ) |
20 | 2, 19 | ax-mp 5 | 1 ⊢ ℝ ≼ 𝒫 ℚ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {crab 3403 Vcvv 3441 ⊆ wss 3897 𝒫 cpw 4546 class class class wbr 5089 ≼ cdom 8794 ℝcr 10963 < clt 11102 ℚcq 12781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-q 12782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |