MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumul Structured version   Visualization version   GIF version

Theorem mumul 25770
Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumul ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))

Proof of Theorem mumul
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → 𝐵 ∈ ℕ)
2 mucl 25730 . . . . . 6 (𝐵 ∈ ℕ → (μ‘𝐵) ∈ ℤ)
31, 2syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℤ)
43zcnd 12080 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℂ)
54mul02d 10831 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (0 · (μ‘𝐵)) = 0)
6 simpr 488 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐴) = 0)
76oveq1d 7154 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = (0 · (μ‘𝐵)))
8 mumullem1 25768 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
983adantl3 1165 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
105, 7, 93eqtr4rd 2847 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
11 simpl1 1188 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → 𝐴 ∈ ℕ)
12 mucl 25730 . . . . . 6 (𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ)
1311, 12syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℤ)
1413zcnd 12080 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℂ)
1514mul01d 10832 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · 0) = 0)
16 simpr 488 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐵) = 0)
1716oveq2d 7155 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = ((μ‘𝐴) · 0))
18 nncn 11637 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
19 nncn 11637 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
20 mulcom 10616 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2118, 19, 20syl2an 598 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2221fveq2d 6653 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
2322adantr 484 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
24 mumullem1 25768 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2524ancom1s 652 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2623, 25eqtrd 2836 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
27263adantl3 1165 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
2815, 17, 273eqtr4rd 2847 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
29 simpl1 1188 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
30 simpl2 1189 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
3129, 30nnmulcld 11682 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (𝐴 · 𝐵) ∈ ℕ)
32 mumullem2 25769 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
33 muval2 25723 . . . 4 (((𝐴 · 𝐵) ∈ ℕ ∧ (μ‘(𝐴 · 𝐵)) ≠ 0) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
3431, 32, 33syl2anc 587 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
35 neg1cn 11743 . . . . . 6 -1 ∈ ℂ
3635a1i 11 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → -1 ∈ ℂ)
37 fzfi 13339 . . . . . . 7 (1...𝐵) ∈ Fin
38 prmssnn 16014 . . . . . . . . 9 ℙ ⊆ ℕ
39 rabss2 4008 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵})
4038, 39ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵}
41 dvdsssfz1 15664 . . . . . . . . 9 (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4230, 41syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4340, 42sstrid 3929 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵))
44 ssfi 8726 . . . . . . 7 (((1...𝐵) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
4537, 43, 44sylancr 590 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
46 hashcl 13717 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
4745, 46syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
48 fzfi 13339 . . . . . . 7 (1...𝐴) ∈ Fin
49 rabss2 4008 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴})
5038, 49ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴}
51 dvdsssfz1 15664 . . . . . . . . 9 (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5229, 51syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5350, 52sstrid 3929 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴))
54 ssfi 8726 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
5548, 53, 54sylancr 590 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
56 hashcl 13717 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5755, 56syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5836, 47, 57expaddd 13512 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))) = ((-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
59 simpr 488 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
60 simpl1 1188 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
6160nnzd 12078 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
6261adantlr 714 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
63 simpl2 1189 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
6463nnzd 12078 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
6564adantlr 714 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
66 euclemma 16051 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6759, 62, 65, 66syl3anc 1368 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6867rabbidva 3428 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)})
69 unrab 4229 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
7068, 69eqtr4di 2854 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}))
7170fveq2d 6653 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})))
72 inrab 4230 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
73 nprmdvds1 16044 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
7473adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
75 prmz 16013 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
7675adantl 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
77 dvdsgcd 15886 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
7876, 62, 65, 77syl3anc 1368 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
79 simpll3 1211 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
8079breq2d 5045 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
8178, 80sylibd 242 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ 1))
8274, 81mtod 201 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ (𝑝𝐴𝑝𝐵))
8382ralrimiva 3152 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
84 rabeq0 4295 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
8583, 84sylibr 237 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅)
8672, 85syl5eq 2848 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅)
87 hashun 13743 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
8855, 45, 86, 87syl3anc 1368 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
8971, 88eqtrd 2836 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9089oveq2d 7155 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})) = (-1↑((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
91 simprl 770 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) ≠ 0)
92 muval2 25723 . . . . . 6 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
9329, 91, 92syl2anc 587 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
94 simprr 772 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) ≠ 0)
95 muval2 25723 . . . . . 6 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0) → (μ‘𝐵) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9630, 94, 95syl2anc 587 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9793, 96oveq12d 7157 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = ((-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
9858, 90, 973eqtr4rd 2847 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
9934, 98eqtr4d 2839 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
10010, 28, 99pm2.61da2ne 3078 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  {crab 3113  cun 3882  cin 3883  wss 3884  c0 4246   class class class wbr 5033  cfv 6328  (class class class)co 7139  Fincfn 8496  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  -cneg 10864  cn 11629  0cn0 11889  cz 11973  ...cfz 12889  cexp 13429  chash 13690  cdvds 15603   gcd cgcd 15837  cprime 16009  μcmu 25684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-mu 25690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator