MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumul Structured version   Visualization version   GIF version

Theorem mumul 26682
Description: The MΓΆbius function is a multiplicative function. This is one of the primary interests of the MΓΆbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumul ((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)))

Proof of Theorem mumul
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ 𝐡 ∈ β„•)
2 mucl 26642 . . . . . 6 (𝐡 ∈ β„• β†’ (ΞΌβ€˜π΅) ∈ β„€)
31, 2syl 17 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ (ΞΌβ€˜π΅) ∈ β„€)
43zcnd 12666 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ (ΞΌβ€˜π΅) ∈ β„‚)
54mul02d 11411 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ (0 Β· (ΞΌβ€˜π΅)) = 0)
6 simpr 485 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ (ΞΌβ€˜π΄) = 0)
76oveq1d 7423 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)) = (0 Β· (ΞΌβ€˜π΅)))
8 mumullem1 26680 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) ∧ (ΞΌβ€˜π΄) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = 0)
983adantl3 1168 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = 0)
105, 7, 93eqtr4rd 2783 . 2 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΄) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)))
11 simpl1 1191 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ 𝐴 ∈ β„•)
12 mucl 26642 . . . . . 6 (𝐴 ∈ β„• β†’ (ΞΌβ€˜π΄) ∈ β„€)
1311, 12syl 17 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜π΄) ∈ β„€)
1413zcnd 12666 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜π΄) ∈ β„‚)
1514mul01d 11412 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ ((ΞΌβ€˜π΄) Β· 0) = 0)
16 simpr 485 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜π΅) = 0)
1716oveq2d 7424 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)) = ((ΞΌβ€˜π΄) Β· 0))
18 nncn 12219 . . . . . . . 8 (𝐴 ∈ β„• β†’ 𝐴 ∈ β„‚)
19 nncn 12219 . . . . . . . 8 (𝐡 ∈ β„• β†’ 𝐡 ∈ β„‚)
20 mulcom 11195 . . . . . . . 8 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
2118, 19, 20syl2an 596 . . . . . . 7 ((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) β†’ (𝐴 Β· 𝐡) = (𝐡 Β· 𝐴))
2221fveq2d 6895 . . . . . 6 ((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = (ΞΌβ€˜(𝐡 Β· 𝐴)))
2322adantr 481 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = (ΞΌβ€˜(𝐡 Β· 𝐴)))
24 mumullem1 26680 . . . . . 6 (((𝐡 ∈ β„• ∧ 𝐴 ∈ β„•) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜(𝐡 Β· 𝐴)) = 0)
2524ancom1s 651 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜(𝐡 Β· 𝐴)) = 0)
2623, 25eqtrd 2772 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = 0)
27263adantl3 1168 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = 0)
2815, 17, 273eqtr4rd 2783 . 2 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ (ΞΌβ€˜π΅) = 0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)))
29 simpl1 1191 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ 𝐴 ∈ β„•)
30 simpl2 1192 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ 𝐡 ∈ β„•)
3129, 30nnmulcld 12264 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (𝐴 Β· 𝐡) ∈ β„•)
32 mumullem2 26681 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) β‰  0)
33 muval2 26635 . . . 4 (((𝐴 Β· 𝐡) ∈ β„• ∧ (ΞΌβ€˜(𝐴 Β· 𝐡)) β‰  0) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)})))
3431, 32, 33syl2anc 584 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)})))
35 neg1cn 12325 . . . . . 6 -1 ∈ β„‚
3635a1i 11 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ -1 ∈ β„‚)
37 fzfi 13936 . . . . . . 7 (1...𝐡) ∈ Fin
38 prmssnn 16612 . . . . . . . . 9 β„™ βŠ† β„•
39 rabss2 4075 . . . . . . . . 9 (β„™ βŠ† β„• β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} βŠ† {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐡})
4038, 39ax-mp 5 . . . . . . . 8 {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} βŠ† {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐡}
41 dvdsssfz1 16260 . . . . . . . . 9 (𝐡 ∈ β„• β†’ {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐡} βŠ† (1...𝐡))
4230, 41syl 17 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐡} βŠ† (1...𝐡))
4340, 42sstrid 3993 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} βŠ† (1...𝐡))
44 ssfi 9172 . . . . . . 7 (((1...𝐡) ∈ Fin ∧ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} βŠ† (1...𝐡)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} ∈ Fin)
4537, 43, 44sylancr 587 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} ∈ Fin)
46 hashcl 14315 . . . . . 6 ({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} ∈ Fin β†’ (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}) ∈ β„•0)
4745, 46syl 17 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}) ∈ β„•0)
48 fzfi 13936 . . . . . . 7 (1...𝐴) ∈ Fin
49 rabss2 4075 . . . . . . . . 9 (β„™ βŠ† β„• β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βŠ† {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐴})
5038, 49ax-mp 5 . . . . . . . 8 {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βŠ† {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐴}
51 dvdsssfz1 16260 . . . . . . . . 9 (𝐴 ∈ β„• β†’ {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐴} βŠ† (1...𝐴))
5229, 51syl 17 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„• ∣ 𝑝 βˆ₯ 𝐴} βŠ† (1...𝐴))
5350, 52sstrid 3993 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βŠ† (1...𝐴))
54 ssfi 9172 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βŠ† (1...𝐴)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} ∈ Fin)
5548, 53, 54sylancr 587 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} ∈ Fin)
56 hashcl 14315 . . . . . 6 ({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} ∈ Fin β†’ (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}) ∈ β„•0)
5755, 56syl 17 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}) ∈ β„•0)
5836, 47, 57expaddd 14112 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (-1↑((β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}) + (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}))) = ((-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})) Β· (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}))))
59 simpr 485 . . . . . . . . . 10 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ 𝑝 ∈ β„™)
60 simpl1 1191 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ 𝑝 ∈ β„™) β†’ 𝐴 ∈ β„•)
6160nnzd 12584 . . . . . . . . . . 11 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ 𝑝 ∈ β„™) β†’ 𝐴 ∈ β„€)
6261adantlr 713 . . . . . . . . . 10 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ 𝐴 ∈ β„€)
63 simpl2 1192 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ 𝑝 ∈ β„™) β†’ 𝐡 ∈ β„•)
6463nnzd 12584 . . . . . . . . . . 11 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ 𝑝 ∈ β„™) β†’ 𝐡 ∈ β„€)
6564adantlr 713 . . . . . . . . . 10 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ 𝐡 ∈ β„€)
66 euclemma 16649 . . . . . . . . . 10 ((𝑝 ∈ β„™ ∧ 𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝑝 βˆ₯ (𝐴 Β· 𝐡) ↔ (𝑝 βˆ₯ 𝐴 ∨ 𝑝 βˆ₯ 𝐡)))
6759, 62, 65, 66syl3anc 1371 . . . . . . . . 9 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ (𝑝 βˆ₯ (𝐴 Β· 𝐡) ↔ (𝑝 βˆ₯ 𝐴 ∨ 𝑝 βˆ₯ 𝐡)))
6867rabbidva 3439 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)} = {𝑝 ∈ β„™ ∣ (𝑝 βˆ₯ 𝐴 ∨ 𝑝 βˆ₯ 𝐡)})
69 unrab 4305 . . . . . . . 8 ({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βˆͺ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}) = {𝑝 ∈ β„™ ∣ (𝑝 βˆ₯ 𝐴 ∨ 𝑝 βˆ₯ 𝐡)}
7068, 69eqtr4di 2790 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)} = ({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βˆͺ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}))
7170fveq2d 6895 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)}) = (β™―β€˜({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βˆͺ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})))
72 inrab 4306 . . . . . . . 8 ({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} ∩ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}) = {𝑝 ∈ β„™ ∣ (𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡)}
73 nprmdvds1 16642 . . . . . . . . . . . 12 (𝑝 ∈ β„™ β†’ Β¬ 𝑝 βˆ₯ 1)
7473adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ Β¬ 𝑝 βˆ₯ 1)
75 prmz 16611 . . . . . . . . . . . . . 14 (𝑝 ∈ β„™ β†’ 𝑝 ∈ β„€)
7675adantl 482 . . . . . . . . . . . . 13 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ 𝑝 ∈ β„€)
77 dvdsgcd 16485 . . . . . . . . . . . . 13 ((𝑝 ∈ β„€ ∧ 𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ ((𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡) β†’ 𝑝 βˆ₯ (𝐴 gcd 𝐡)))
7876, 62, 65, 77syl3anc 1371 . . . . . . . . . . . 12 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ ((𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡) β†’ 𝑝 βˆ₯ (𝐴 gcd 𝐡)))
79 simpll3 1214 . . . . . . . . . . . . 13 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ (𝐴 gcd 𝐡) = 1)
8079breq2d 5160 . . . . . . . . . . . 12 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ (𝑝 βˆ₯ (𝐴 gcd 𝐡) ↔ 𝑝 βˆ₯ 1))
8178, 80sylibd 238 . . . . . . . . . . 11 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ ((𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡) β†’ 𝑝 βˆ₯ 1))
8274, 81mtod 197 . . . . . . . . . 10 ((((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) ∧ 𝑝 ∈ β„™) β†’ Β¬ (𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡))
8382ralrimiva 3146 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ βˆ€π‘ ∈ β„™ Β¬ (𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡))
84 rabeq0 4384 . . . . . . . . 9 ({𝑝 ∈ β„™ ∣ (𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡)} = βˆ… ↔ βˆ€π‘ ∈ β„™ Β¬ (𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡))
8583, 84sylibr 233 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ {𝑝 ∈ β„™ ∣ (𝑝 βˆ₯ 𝐴 ∧ 𝑝 βˆ₯ 𝐡)} = βˆ…)
8672, 85eqtrid 2784 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ ({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} ∩ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}) = βˆ…)
87 hashun 14341 . . . . . . 7 (({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} ∈ Fin ∧ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡} ∈ Fin ∧ ({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} ∩ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}) = βˆ…) β†’ (β™―β€˜({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βˆͺ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})) = ((β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}) + (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})))
8855, 45, 86, 87syl3anc 1371 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (β™―β€˜({𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴} βˆͺ {𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})) = ((β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}) + (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})))
8971, 88eqtrd 2772 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)}) = ((β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}) + (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})))
9089oveq2d 7424 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)})) = (-1↑((β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}) + (β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}))))
91 simprl 769 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜π΄) β‰  0)
92 muval2 26635 . . . . . 6 ((𝐴 ∈ β„• ∧ (ΞΌβ€˜π΄) β‰  0) β†’ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})))
9329, 91, 92syl2anc 584 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})))
94 simprr 771 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜π΅) β‰  0)
95 muval2 26635 . . . . . 6 ((𝐡 ∈ β„• ∧ (ΞΌβ€˜π΅) β‰  0) β†’ (ΞΌβ€˜π΅) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})))
9630, 94, 95syl2anc 584 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜π΅) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡})))
9793, 96oveq12d 7426 . . . 4 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)) = ((-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})) Β· (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐡}))))
9858, 90, 973eqtr4rd 2783 . . 3 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ (𝐴 Β· 𝐡)})))
9934, 98eqtr4d 2775 . 2 (((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) ∧ ((ΞΌβ€˜π΄) β‰  0 ∧ (ΞΌβ€˜π΅) β‰  0)) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)))
10010, 28, 99pm2.61da2ne 3030 1 ((𝐴 ∈ β„• ∧ 𝐡 ∈ β„• ∧ (𝐴 gcd 𝐡) = 1) β†’ (ΞΌβ€˜(𝐴 Β· 𝐡)) = ((ΞΌβ€˜π΄) Β· (ΞΌβ€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Fincfn 8938  β„‚cc 11107  0cc0 11109  1c1 11110   + caddc 11112   Β· cmul 11114  -cneg 11444  β„•cn 12211  β„•0cn0 12471  β„€cz 12557  ...cfz 13483  β†‘cexp 14026  β™―chash 14289   βˆ₯ cdvds 16196   gcd cgcd 16434  β„™cprime 16607  ΞΌcmu 26596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-fz 13484  df-fl 13756  df-mod 13834  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-dvds 16197  df-gcd 16435  df-prm 16608  df-pc 16769  df-mu 26602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator