Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → 𝐵 ∈ ℕ) |
2 | | mucl 26195 |
. . . . . 6
⊢ (𝐵 ∈ ℕ →
(μ‘𝐵) ∈
ℤ) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℤ) |
4 | 3 | zcnd 12356 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℂ) |
5 | 4 | mul02d 11103 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (0 · (μ‘𝐵)) = 0) |
6 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐴) = 0) |
7 | 6 | oveq1d 7270 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = (0 · (μ‘𝐵))) |
8 | | mumullem1 26233 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(μ‘𝐴) = 0) →
(μ‘(𝐴 ·
𝐵)) = 0) |
9 | 8 | 3adantl3 1166 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0) |
10 | 5, 7, 9 | 3eqtr4rd 2789 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵))) |
11 | | simpl1 1189 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → 𝐴 ∈ ℕ) |
12 | | mucl 26195 |
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(μ‘𝐴) ∈
ℤ) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℤ) |
14 | 13 | zcnd 12356 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℂ) |
15 | 14 | mul01d 11104 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · 0) = 0) |
16 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐵) = 0) |
17 | 16 | oveq2d 7271 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = ((μ‘𝐴) · 0)) |
18 | | nncn 11911 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
19 | | nncn 11911 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
20 | | mulcom 10888 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
21 | 18, 19, 20 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
22 | 21 | fveq2d 6760 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(μ‘(𝐴 ·
𝐵)) = (μ‘(𝐵 · 𝐴))) |
23 | 22 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(μ‘𝐵) = 0) →
(μ‘(𝐴 ·
𝐵)) = (μ‘(𝐵 · 𝐴))) |
24 | | mumullem1 26233 |
. . . . . 6
⊢ (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) ∧
(μ‘𝐵) = 0) →
(μ‘(𝐵 ·
𝐴)) = 0) |
25 | 24 | ancom1s 649 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(μ‘𝐵) = 0) →
(μ‘(𝐵 ·
𝐴)) = 0) |
26 | 23, 25 | eqtrd 2778 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(μ‘𝐵) = 0) →
(μ‘(𝐴 ·
𝐵)) = 0) |
27 | 26 | 3adantl3 1166 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0) |
28 | 15, 17, 27 | 3eqtr4rd 2789 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵))) |
29 | | simpl1 1189 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ) |
30 | | simpl2 1190 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ) |
31 | 29, 30 | nnmulcld 11956 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (𝐴 · 𝐵) ∈ ℕ) |
32 | | mumullem2 26234 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0) |
33 | | muval2 26188 |
. . . 4
⊢ (((𝐴 · 𝐵) ∈ ℕ ∧ (μ‘(𝐴 · 𝐵)) ≠ 0) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}))) |
34 | 31, 32, 33 | syl2anc 583 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}))) |
35 | | neg1cn 12017 |
. . . . . 6
⊢ -1 ∈
ℂ |
36 | 35 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → -1 ∈
ℂ) |
37 | | fzfi 13620 |
. . . . . . 7
⊢
(1...𝐵) ∈
Fin |
38 | | prmssnn 16309 |
. . . . . . . . 9
⊢ ℙ
⊆ ℕ |
39 | | rabss2 4007 |
. . . . . . . . 9
⊢ (ℙ
⊆ ℕ → {𝑝
∈ ℙ ∣ 𝑝
∥ 𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵}) |
40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} |
41 | | dvdsssfz1 15955 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) |
42 | 30, 41 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) |
43 | 40, 42 | sstrid 3928 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) |
44 | | ssfi 8918 |
. . . . . . 7
⊢
(((1...𝐵) ∈ Fin
∧ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐵} ⊆ (1...𝐵)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵} ∈ Fin) |
45 | 37, 43, 44 | sylancr 586 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵} ∈ Fin) |
46 | | hashcl 13999 |
. . . . . 6
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}) ∈
ℕ0) |
47 | 45, 46 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}) ∈
ℕ0) |
48 | | fzfi 13620 |
. . . . . . 7
⊢
(1...𝐴) ∈
Fin |
49 | | rabss2 4007 |
. . . . . . . . 9
⊢ (ℙ
⊆ ℕ → {𝑝
∈ ℙ ∣ 𝑝
∥ 𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴}) |
50 | 38, 49 | ax-mp 5 |
. . . . . . . 8
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} |
51 | | dvdsssfz1 15955 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) |
52 | 29, 51 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) |
53 | 50, 52 | sstrid 3928 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) |
54 | | ssfi 8918 |
. . . . . . 7
⊢
(((1...𝐴) ∈ Fin
∧ {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) |
55 | 48, 53, 54 | sylancr 586 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin) |
56 | | hashcl 13999 |
. . . . . 6
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈
ℕ0) |
57 | 55, 56 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) ∈
ℕ0) |
58 | 36, 47, 57 | expaddd 13794 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) →
(-1↑((♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐴}) +
(♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐵}))) =
((-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐴})) ·
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐵})))) |
59 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
60 | | simpl1 1189 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ) |
61 | 60 | nnzd 12354 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
62 | 61 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
63 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ) |
64 | 63 | nnzd 12354 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ) |
65 | 64 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ) |
66 | | euclemma 16346 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵))) |
67 | 59, 62, 65, 66 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵))) |
68 | 67 | rabbidva 3402 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = {𝑝 ∈ ℙ ∣ (𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵)}) |
69 | | unrab 4236 |
. . . . . . . 8
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵)} |
70 | 68, 69 | eqtr4di 2797 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵})) |
71 | 70 | fveq2d 6760 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = (♯‘({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}))) |
72 | | inrab 4237 |
. . . . . . . 8
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵)} |
73 | | nprmdvds1 16339 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℙ → ¬
𝑝 ∥
1) |
74 | 73 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1) |
75 | | prmz 16308 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
76 | 75 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
77 | | dvdsgcd 16180 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵))) |
78 | 76, 62, 65, 77 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵))) |
79 | | simpll3 1212 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1) |
80 | 79 | breq2d 5082 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1)) |
81 | 78, 80 | sylibd 238 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ 1)) |
82 | 74, 81 | mtod 197 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵)) |
83 | 82 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ∀𝑝 ∈ ℙ ¬ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵)) |
84 | | rabeq0 4315 |
. . . . . . . . 9
⊢ ({𝑝 ∈ ℙ ∣ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵)} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵)) |
85 | 83, 84 | sylibr 233 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵)} = ∅) |
86 | 72, 85 | syl5eq 2791 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}) = ∅) |
87 | | hashun 14025 |
. . . . . . 7
⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵} ∈ Fin ∧ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}) = ∅) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}))) |
88 | 55, 45, 86, 87 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}))) |
89 | 71, 88 | eqtrd 2778 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵}))) |
90 | 89 | oveq2d 7271 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) →
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ (𝐴 · 𝐵)})) =
(-1↑((♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐴}) +
(♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝐵})))) |
91 | | simprl 767 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) ≠ 0) |
92 | | muval2 26188 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧
(μ‘𝐴) ≠ 0)
→ (μ‘𝐴) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐴}))) |
93 | 29, 91, 92 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐴}))) |
94 | | simprr 769 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) ≠ 0) |
95 | | muval2 26188 |
. . . . . 6
⊢ ((𝐵 ∈ ℕ ∧
(μ‘𝐵) ≠ 0)
→ (μ‘𝐵) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐵}))) |
96 | 30, 94, 95 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐵}))) |
97 | 93, 96 | oveq12d 7273 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) =
((-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐴})) ·
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝐵})))) |
98 | 58, 90, 97 | 3eqtr4rd 2789 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ (𝐴 · 𝐵)}))) |
99 | 34, 98 | eqtr4d 2781 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵))) |
100 | 10, 28, 99 | pm2.61da2ne 3032 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵))) |