MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumul Structured version   Visualization version   GIF version

Theorem mumul 27224
Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumul ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))

Proof of Theorem mumul
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → 𝐵 ∈ ℕ)
2 mucl 27184 . . . . . 6 (𝐵 ∈ ℕ → (μ‘𝐵) ∈ ℤ)
31, 2syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℤ)
43zcnd 12723 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℂ)
54mul02d 11459 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (0 · (μ‘𝐵)) = 0)
6 simpr 484 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐴) = 0)
76oveq1d 7446 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = (0 · (μ‘𝐵)))
8 mumullem1 27222 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
983adantl3 1169 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
105, 7, 93eqtr4rd 2788 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
11 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → 𝐴 ∈ ℕ)
12 mucl 27184 . . . . . 6 (𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ)
1311, 12syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℤ)
1413zcnd 12723 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℂ)
1514mul01d 11460 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · 0) = 0)
16 simpr 484 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐵) = 0)
1716oveq2d 7447 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = ((μ‘𝐴) · 0))
18 nncn 12274 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
19 nncn 12274 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
20 mulcom 11241 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2118, 19, 20syl2an 596 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2221fveq2d 6910 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
2322adantr 480 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
24 mumullem1 27222 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2524ancom1s 653 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2623, 25eqtrd 2777 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
27263adantl3 1169 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
2815, 17, 273eqtr4rd 2788 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
29 simpl1 1192 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
30 simpl2 1193 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
3129, 30nnmulcld 12319 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (𝐴 · 𝐵) ∈ ℕ)
32 mumullem2 27223 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
33 muval2 27177 . . . 4 (((𝐴 · 𝐵) ∈ ℕ ∧ (μ‘(𝐴 · 𝐵)) ≠ 0) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
3431, 32, 33syl2anc 584 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
35 neg1cn 12380 . . . . . 6 -1 ∈ ℂ
3635a1i 11 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → -1 ∈ ℂ)
37 fzfi 14013 . . . . . . 7 (1...𝐵) ∈ Fin
38 prmssnn 16713 . . . . . . . . 9 ℙ ⊆ ℕ
39 rabss2 4078 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵})
4038, 39ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵}
41 dvdsssfz1 16355 . . . . . . . . 9 (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4230, 41syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4340, 42sstrid 3995 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵))
44 ssfi 9213 . . . . . . 7 (((1...𝐵) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
4537, 43, 44sylancr 587 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
46 hashcl 14395 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
4745, 46syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
48 fzfi 14013 . . . . . . 7 (1...𝐴) ∈ Fin
49 rabss2 4078 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴})
5038, 49ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴}
51 dvdsssfz1 16355 . . . . . . . . 9 (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5229, 51syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5350, 52sstrid 3995 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴))
54 ssfi 9213 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
5548, 53, 54sylancr 587 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
56 hashcl 14395 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5755, 56syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5836, 47, 57expaddd 14188 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))) = ((-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
59 simpr 484 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
60 simpl1 1192 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
6160nnzd 12640 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
6261adantlr 715 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
63 simpl2 1193 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
6463nnzd 12640 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
6564adantlr 715 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
66 euclemma 16750 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6759, 62, 65, 66syl3anc 1373 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6867rabbidva 3443 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)})
69 unrab 4315 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
7068, 69eqtr4di 2795 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}))
7170fveq2d 6910 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})))
72 inrab 4316 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
73 nprmdvds1 16743 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
7473adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
75 prmz 16712 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
7675adantl 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
77 dvdsgcd 16581 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
7876, 62, 65, 77syl3anc 1373 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
79 simpll3 1215 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
8079breq2d 5155 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
8178, 80sylibd 239 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ 1))
8274, 81mtod 198 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ (𝑝𝐴𝑝𝐵))
8382ralrimiva 3146 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
84 rabeq0 4388 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
8583, 84sylibr 234 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅)
8672, 85eqtrid 2789 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅)
87 hashun 14421 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
8855, 45, 86, 87syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
8971, 88eqtrd 2777 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9089oveq2d 7447 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})) = (-1↑((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
91 simprl 771 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) ≠ 0)
92 muval2 27177 . . . . . 6 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
9329, 91, 92syl2anc 584 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
94 simprr 773 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) ≠ 0)
95 muval2 27177 . . . . . 6 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0) → (μ‘𝐵) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9630, 94, 95syl2anc 584 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9793, 96oveq12d 7449 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = ((-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
9858, 90, 973eqtr4rd 2788 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
9934, 98eqtr4d 2780 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
10010, 28, 99pm2.61da2ne 3030 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  cun 3949  cin 3950  wss 3951  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  -cneg 11493  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  cexp 14102  chash 14369  cdvds 16290   gcd cgcd 16531  cprime 16708  μcmu 27138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-mu 27144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator