MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumul Structured version   Visualization version   GIF version

Theorem mumul 25463
Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumul ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))

Proof of Theorem mumul
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1172 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → 𝐵 ∈ ℕ)
2 mucl 25423 . . . . . 6 (𝐵 ∈ ℕ → (μ‘𝐵) ∈ ℤ)
31, 2syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℤ)
43zcnd 11904 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐵) ∈ ℂ)
54mul02d 10640 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (0 · (μ‘𝐵)) = 0)
6 simpr 477 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘𝐴) = 0)
76oveq1d 6993 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = (0 · (μ‘𝐵)))
8 mumullem1 25461 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
983adantl3 1148 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
105, 7, 93eqtr4rd 2825 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐴) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
11 simpl1 1171 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → 𝐴 ∈ ℕ)
12 mucl 25423 . . . . . 6 (𝐴 ∈ ℕ → (μ‘𝐴) ∈ ℤ)
1311, 12syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℤ)
1413zcnd 11904 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐴) ∈ ℂ)
1514mul01d 10641 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · 0) = 0)
16 simpr 477 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘𝐵) = 0)
1716oveq2d 6994 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → ((μ‘𝐴) · (μ‘𝐵)) = ((μ‘𝐴) · 0))
18 nncn 11450 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
19 nncn 11450 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
20 mulcom 10423 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2118, 19, 20syl2an 586 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2221fveq2d 6505 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
2322adantr 473 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = (μ‘(𝐵 · 𝐴)))
24 mumullem1 25461 . . . . . 6 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2524ancom1s 640 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐵 · 𝐴)) = 0)
2623, 25eqtrd 2814 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
27263adantl3 1148 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = 0)
2815, 17, 273eqtr4rd 2825 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ (μ‘𝐵) = 0) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
29 simpl1 1171 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐴 ∈ ℕ)
30 simpl2 1172 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → 𝐵 ∈ ℕ)
3129, 30nnmulcld 11496 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (𝐴 · 𝐵) ∈ ℕ)
32 mumullem2 25462 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) ≠ 0)
33 muval2 25416 . . . 4 (((𝐴 · 𝐵) ∈ ℕ ∧ (μ‘(𝐴 · 𝐵)) ≠ 0) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
3431, 32, 33syl2anc 576 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
35 neg1cn 11564 . . . . . 6 -1 ∈ ℂ
3635a1i 11 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → -1 ∈ ℂ)
37 fzfi 13158 . . . . . . 7 (1...𝐵) ∈ Fin
38 prmssnn 15879 . . . . . . . . 9 ℙ ⊆ ℕ
39 rabss2 3946 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵})
4038, 39ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐵}
41 dvdsssfz1 15531 . . . . . . . . 9 (𝐵 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4230, 41syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐵} ⊆ (1...𝐵))
4340, 42syl5ss 3871 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵))
44 ssfi 8535 . . . . . . 7 (((1...𝐵) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ⊆ (1...𝐵)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
4537, 43, 44sylancr 578 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin)
46 hashcl 13535 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
4745, 46syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}) ∈ ℕ0)
48 fzfi 13158 . . . . . . 7 (1...𝐴) ∈ Fin
49 rabss2 3946 . . . . . . . . 9 (ℙ ⊆ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴})
5038, 49ax-mp 5 . . . . . . . 8 {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ {𝑝 ∈ ℕ ∣ 𝑝𝐴}
51 dvdsssfz1 15531 . . . . . . . . 9 (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5229, 51syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℕ ∣ 𝑝𝐴} ⊆ (1...𝐴))
5350, 52syl5ss 3871 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴))
54 ssfi 8535 . . . . . . 7 (((1...𝐴) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐴} ⊆ (1...𝐴)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
5548, 53, 54sylancr 578 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin)
56 hashcl 13535 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5755, 56syl 17 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) ∈ ℕ0)
5836, 47, 57expaddd 13330 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))) = ((-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
59 simpr 477 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
60 simpl1 1171 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
6160nnzd 11902 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
6261adantlr 702 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
63 simpl2 1172 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℕ)
6463nnzd 11902 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
6564adantlr 702 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
66 euclemma 15916 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6759, 62, 65, 66syl3anc 1351 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 · 𝐵) ↔ (𝑝𝐴𝑝𝐵)))
6867rabbidva 3402 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)})
69 unrab 4163 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
7068, 69syl6eqr 2832 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)} = ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵}))
7170fveq2d 6505 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})))
72 inrab 4164 . . . . . . . 8 ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)}
73 nprmdvds1 15909 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
7473adantl 474 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ 𝑝 ∥ 1)
75 prmz 15878 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
7675adantl 474 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
77 dvdsgcd 15751 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
7876, 62, 65, 77syl3anc 1351 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
79 simpll3 1194 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) = 1)
8079breq2d 4942 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
8178, 80sylibd 231 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ 1))
8274, 81mtod 190 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) ∧ 𝑝 ∈ ℙ) → ¬ (𝑝𝐴𝑝𝐵))
8382ralrimiva 3132 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
84 rabeq0 4226 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ (𝑝𝐴𝑝𝐵))
8583, 84sylibr 226 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → {𝑝 ∈ ℙ ∣ (𝑝𝐴𝑝𝐵)} = ∅)
8672, 85syl5eq 2826 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅)
87 hashun 13559 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐵} ∈ Fin ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∩ {𝑝 ∈ ℙ ∣ 𝑝𝐵}) = ∅) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
8855, 45, 86, 87syl3anc 1351 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘({𝑝 ∈ ℙ ∣ 𝑝𝐴} ∪ {𝑝 ∈ ℙ ∣ 𝑝𝐵})) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
8971, 88eqtrd 2814 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)}) = ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9089oveq2d 6994 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})) = (-1↑((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}) + (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
91 simprl 758 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) ≠ 0)
92 muval2 25416 . . . . . 6 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
9329, 91, 92syl2anc 576 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
94 simprr 760 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) ≠ 0)
95 muval2 25416 . . . . . 6 ((𝐵 ∈ ℕ ∧ (μ‘𝐵) ≠ 0) → (μ‘𝐵) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9630, 94, 95syl2anc 576 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘𝐵) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵})))
9793, 96oveq12d 6996 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = ((-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) · (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐵}))))
9858, 90, 973eqtr4rd 2825 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → ((μ‘𝐴) · (μ‘𝐵)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ (𝐴 · 𝐵)})))
9934, 98eqtr4d 2817 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) ∧ ((μ‘𝐴) ≠ 0 ∧ (μ‘𝐵) ≠ 0)) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
10010, 28, 99pm2.61da2ne 3056 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) = 1) → (μ‘(𝐴 · 𝐵)) = ((μ‘𝐴) · (μ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wral 3088  {crab 3092  cun 3829  cin 3830  wss 3831  c0 4180   class class class wbr 4930  cfv 6190  (class class class)co 6978  Fincfn 8308  cc 10335  0cc0 10337  1c1 10338   + caddc 10340   · cmul 10342  -cneg 10673  cn 11441  0cn0 11710  cz 11796  ...cfz 12711  cexp 13247  chash 13508  cdvds 15470   gcd cgcd 15706  cprime 15874  μcmu 25377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414  ax-pre-sup 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-sup 8703  df-inf 8704  df-dju 9126  df-card 9164  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-2 11506  df-3 11507  df-n0 11711  df-z 11797  df-uz 12062  df-q 12166  df-rp 12208  df-fz 12712  df-fl 12980  df-mod 13056  df-seq 13188  df-exp 13248  df-hash 13509  df-cj 14322  df-re 14323  df-im 14324  df-sqrt 14458  df-abs 14459  df-dvds 15471  df-gcd 15707  df-prm 15875  df-pc 16033  df-mu 25383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator