MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmatsgrp Structured version   Visualization version   GIF version

Theorem dmatsgrp 20631
Description: The set of diagonal matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 19-Aug-2019.) (Revised by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
dmatid.a 𝐴 = (𝑁 Mat 𝑅)
dmatid.b 𝐵 = (Base‘𝐴)
dmatid.0 0 = (0g𝑅)
dmatid.d 𝐷 = (𝑁 DMat 𝑅)
Assertion
Ref Expression
dmatsgrp ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴))

Proof of Theorem dmatsgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmatid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 dmatid.b . . . . 5 𝐵 = (Base‘𝐴)
3 dmatid.0 . . . . 5 0 = (0g𝑅)
4 dmatid.d . . . . 5 𝐷 = (𝑁 DMat 𝑅)
51, 2, 3, 4dmatmat 20626 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑧𝐷𝑧𝐵))
65ancoms 451 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑧𝐷𝑧𝐵))
76ssrdv 3804 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷𝐵)
81, 2, 3, 4dmatid 20627 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐷)
98ancoms 451 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (1r𝐴) ∈ 𝐷)
109ne0d 4122 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ≠ ∅)
111, 2, 3, 4dmatsubcl 20630 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(-g𝐴)𝑦) ∈ 𝐷)
1211ancom1s 644 . . 3 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑥𝐷𝑦𝐷)) → (𝑥(-g𝐴)𝑦) ∈ 𝐷)
1312ralrimivva 3152 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ∀𝑥𝐷𝑦𝐷 (𝑥(-g𝐴)𝑦) ∈ 𝐷)
141matring 20574 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1514ancoms 451 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐴 ∈ Ring)
16 ringgrp 18868 . . 3 (𝐴 ∈ Ring → 𝐴 ∈ Grp)
17 eqid 2799 . . . 4 (-g𝐴) = (-g𝐴)
182, 17issubg4 17926 . . 3 (𝐴 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐴) ↔ (𝐷𝐵𝐷 ≠ ∅ ∧ ∀𝑥𝐷𝑦𝐷 (𝑥(-g𝐴)𝑦) ∈ 𝐷)))
1915, 16, 183syl 18 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝐷 ∈ (SubGrp‘𝐴) ↔ (𝐷𝐵𝐷 ≠ ∅ ∧ ∀𝑥𝐷𝑦𝐷 (𝑥(-g𝐴)𝑦) ∈ 𝐷)))
207, 10, 13, 19mpbir3and 1443 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 𝐷 ∈ (SubGrp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  wss 3769  c0 4115  cfv 6101  (class class class)co 6878  Fincfn 8195  Basecbs 16184  0gc0g 16415  Grpcgrp 17738  -gcsg 17740  SubGrpcsubg 17901  1rcur 18817  Ringcrg 18863   Mat cmat 20538   DMat cdmat 20620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-ot 4377  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-hom 16291  df-cco 16292  df-0g 16417  df-gsum 16418  df-prds 16423  df-pws 16425  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-mulg 17857  df-subg 17904  df-ghm 17971  df-cntz 18062  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-subrg 19096  df-lmod 19183  df-lss 19251  df-sra 19495  df-rgmod 19496  df-dsmm 20401  df-frlm 20416  df-mamu 20515  df-mat 20539  df-dmat 20622
This theorem is referenced by:  dmatsrng  20633  scmatsgrp1  20654
  Copyright terms: Public domain W3C validator