MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atans Structured version   Visualization version   GIF version

Theorem atans 26840
Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
atans (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem atans
StepHypRef Expression
1 oveq1 7394 . . . 4 (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2))
21oveq2d 7403 . . 3 (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2)))
32eleq1d 2813 . 2 (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷))
4 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
53, 4elrab2 3662 1 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  cdif 3911  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  -∞cmnf 11206  2c2 12241  (,]cioc 13307  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  atans2  26841
  Copyright terms: Public domain W3C validator