MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atans Structured version   Visualization version   GIF version

Theorem atans 26988
Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
atans (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem atans
StepHypRef Expression
1 oveq1 7438 . . . 4 (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2))
21oveq2d 7447 . . 3 (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2)))
32eleq1d 2824 . 2 (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷))
4 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
53, 4elrab2 3698 1 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  {crab 3433  cdif 3960  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156  -∞cmnf 11291  2c2 12319  (,]cioc 13385  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  atans2  26989
  Copyright terms: Public domain W3C validator