MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atans Structured version   Visualization version   GIF version

Theorem atans 26776
Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
atans (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem atans
StepHypRef Expression
1 oveq1 7419 . . . 4 (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2))
21oveq2d 7428 . . 3 (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2)))
32eleq1d 2817 . 2 (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷))
4 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
53, 4elrab2 3686 1 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  {crab 3431  cdif 3945  (class class class)co 7412  cc 11114  0cc0 11116  1c1 11117   + caddc 11119  -∞cmnf 11253  2c2 12274  (,]cioc 13332  cexp 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415
This theorem is referenced by:  atans2  26777
  Copyright terms: Public domain W3C validator