| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atans | Structured version Visualization version GIF version | ||
| Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
| Ref | Expression |
|---|---|
| atans | ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2)) | |
| 2 | 1 | oveq2d 7371 | . . 3 ⊢ (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2))) |
| 3 | 2 | eleq1d 2818 | . 2 ⊢ (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷)) |
| 4 | atansopn.s | . 2 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
| 5 | 3, 4 | elrab2 3646 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ∖ cdif 3895 (class class class)co 7355 ℂcc 11015 0cc0 11017 1c1 11018 + caddc 11020 -∞cmnf 11155 2c2 12191 (,]cioc 13253 ↑cexp 13975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 |
| This theorem is referenced by: atans2 26888 |
| Copyright terms: Public domain | W3C validator |