![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atans | Structured version Visualization version GIF version |
Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
Ref | Expression |
---|---|
atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
Ref | Expression |
---|---|
atans | ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7419 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2)) | |
2 | 1 | oveq2d 7428 | . . 3 ⊢ (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2))) |
3 | 2 | eleq1d 2817 | . 2 ⊢ (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷)) |
4 | atansopn.s | . 2 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
5 | 3, 4 | elrab2 3686 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 ∖ cdif 3945 (class class class)co 7412 ℂcc 11114 0cc0 11116 1c1 11117 + caddc 11119 -∞cmnf 11253 2c2 12274 (,]cioc 13332 ↑cexp 14034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 |
This theorem is referenced by: atans2 26777 |
Copyright terms: Public domain | W3C validator |