| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atans | Structured version Visualization version GIF version | ||
| Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
| Ref | Expression |
|---|---|
| atans | ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7396 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2)) | |
| 2 | 1 | oveq2d 7405 | . . 3 ⊢ (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2))) |
| 3 | 2 | eleq1d 2814 | . 2 ⊢ (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷)) |
| 4 | atansopn.s | . 2 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
| 5 | 3, 4 | elrab2 3664 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3913 (class class class)co 7389 ℂcc 11072 0cc0 11074 1c1 11075 + caddc 11077 -∞cmnf 11212 2c2 12242 (,]cioc 13313 ↑cexp 14032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 df-ov 7392 |
| This theorem is referenced by: atans2 26847 |
| Copyright terms: Public domain | W3C validator |