![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atans | Structured version Visualization version GIF version |
Description: The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
Ref | Expression |
---|---|
atansopn.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
atansopn.s | ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} |
Ref | Expression |
---|---|
atans | ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦↑2) = (𝐴↑2)) | |
2 | 1 | oveq2d 7464 | . . 3 ⊢ (𝑦 = 𝐴 → (1 + (𝑦↑2)) = (1 + (𝐴↑2))) |
3 | 2 | eleq1d 2829 | . 2 ⊢ (𝑦 = 𝐴 → ((1 + (𝑦↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ 𝐷)) |
4 | atansopn.s | . 2 ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} | |
5 | 3, 4 | elrab2 3711 | 1 ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 -∞cmnf 11322 2c2 12348 (,]cioc 13408 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: atans2 26992 |
Copyright terms: Public domain | W3C validator |