Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bndatandm | Structured version Visualization version GIF version |
Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
Ref | Expression |
---|---|
bndatandm | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ) | |
2 | sqcl 13766 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ∈ ℂ) |
4 | 3 | abscld 15076 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ∈ ℝ) |
5 | 2nn0 12180 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
6 | absexp 14944 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) | |
7 | 1, 5, 6 | sylancl 585 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) |
8 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1) | |
9 | abscl 14918 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ) |
11 | 1red 10907 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ) | |
12 | absge0 14927 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴)) |
14 | 0le1 11428 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ 1) |
16 | 10, 11, 13, 15 | lt2sqd 13901 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ ((abs‘𝐴)↑2) < (1↑2))) |
17 | 8, 16 | mpbid 231 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < (1↑2)) |
18 | sq1 13840 | . . . . . 6 ⊢ (1↑2) = 1 | |
19 | 17, 18 | breqtrdi 5111 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < 1) |
20 | 7, 19 | eqbrtrd 5092 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) < 1) |
21 | 4, 20 | ltned 11041 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ≠ 1) |
22 | fveq2 6756 | . . . . 5 ⊢ ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = (abs‘-1)) | |
23 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
24 | 23 | absnegi 15040 | . . . . . 6 ⊢ (abs‘-1) = (abs‘1) |
25 | abs1 14937 | . . . . . 6 ⊢ (abs‘1) = 1 | |
26 | 24, 25 | eqtri 2766 | . . . . 5 ⊢ (abs‘-1) = 1 |
27 | 22, 26 | eqtrdi 2795 | . . . 4 ⊢ ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = 1) |
28 | 27 | necon3i 2975 | . . 3 ⊢ ((abs‘(𝐴↑2)) ≠ 1 → (𝐴↑2) ≠ -1) |
29 | 21, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ≠ -1) |
30 | atandm3 25933 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | |
31 | 1, 29, 30 | sylanbrc 582 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 < clt 10940 ≤ cle 10941 -cneg 11136 2c2 11958 ℕ0cn0 12163 ↑cexp 13710 abscabs 14873 arctancatan 25919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-atan 25922 |
This theorem is referenced by: atantayl 25992 log2cnv 25999 |
Copyright terms: Public domain | W3C validator |