|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bndatandm | Structured version Visualization version GIF version | ||
| Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| bndatandm | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ) | |
| 2 | sqcl 14158 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ∈ ℂ) | 
| 4 | 3 | abscld 15475 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ∈ ℝ) | 
| 5 | 2nn0 12543 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 6 | absexp 15343 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) | |
| 7 | 1, 5, 6 | sylancl 586 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) | 
| 8 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1) | |
| 9 | abscl 15317 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ) | 
| 11 | 1red 11262 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ) | |
| 12 | absge0 15326 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴)) | 
| 14 | 0le1 11786 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ 1) | 
| 16 | 10, 11, 13, 15 | lt2sqd 14295 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ ((abs‘𝐴)↑2) < (1↑2))) | 
| 17 | 8, 16 | mpbid 232 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < (1↑2)) | 
| 18 | sq1 14234 | . . . . . 6 ⊢ (1↑2) = 1 | |
| 19 | 17, 18 | breqtrdi 5184 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < 1) | 
| 20 | 7, 19 | eqbrtrd 5165 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) < 1) | 
| 21 | 4, 20 | ltned 11397 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ≠ 1) | 
| 22 | fveq2 6906 | . . . . 5 ⊢ ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = (abs‘-1)) | |
| 23 | ax-1cn 11213 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 24 | 23 | absnegi 15439 | . . . . . 6 ⊢ (abs‘-1) = (abs‘1) | 
| 25 | abs1 15336 | . . . . . 6 ⊢ (abs‘1) = 1 | |
| 26 | 24, 25 | eqtri 2765 | . . . . 5 ⊢ (abs‘-1) = 1 | 
| 27 | 22, 26 | eqtrdi 2793 | . . . 4 ⊢ ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = 1) | 
| 28 | 27 | necon3i 2973 | . . 3 ⊢ ((abs‘(𝐴↑2)) ≠ 1 → (𝐴↑2) ≠ -1) | 
| 29 | 21, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ≠ -1) | 
| 30 | atandm3 26921 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | |
| 31 | 1, 29, 30 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 < clt 11295 ≤ cle 11296 -cneg 11493 2c2 12321 ℕ0cn0 12526 ↑cexp 14102 abscabs 15273 arctancatan 26907 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-atan 26910 | 
| This theorem is referenced by: atantayl 26980 log2cnv 26987 | 
| Copyright terms: Public domain | W3C validator |