![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bndatandm | Structured version Visualization version GIF version |
Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
Ref | Expression |
---|---|
bndatandm | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ) | |
2 | sqcl 14122 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
3 | 2 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ∈ ℂ) |
4 | 3 | abscld 15423 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ∈ ℝ) |
5 | 2nn0 12527 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
6 | absexp 15291 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) | |
7 | 1, 5, 6 | sylancl 584 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2)) |
8 | simpr 483 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1) | |
9 | abscl 15265 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
10 | 9 | adantr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ) |
11 | 1red 11253 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ) | |
12 | absge0 15274 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
13 | 12 | adantr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴)) |
14 | 0le1 11775 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ 1) |
16 | 10, 11, 13, 15 | lt2sqd 14258 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ ((abs‘𝐴)↑2) < (1↑2))) |
17 | 8, 16 | mpbid 231 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < (1↑2)) |
18 | sq1 14198 | . . . . . 6 ⊢ (1↑2) = 1 | |
19 | 17, 18 | breqtrdi 5193 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < 1) |
20 | 7, 19 | eqbrtrd 5174 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) < 1) |
21 | 4, 20 | ltned 11388 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ≠ 1) |
22 | fveq2 6902 | . . . . 5 ⊢ ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = (abs‘-1)) | |
23 | ax-1cn 11204 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
24 | 23 | absnegi 15387 | . . . . . 6 ⊢ (abs‘-1) = (abs‘1) |
25 | abs1 15284 | . . . . . 6 ⊢ (abs‘1) = 1 | |
26 | 24, 25 | eqtri 2756 | . . . . 5 ⊢ (abs‘-1) = 1 |
27 | 22, 26 | eqtrdi 2784 | . . . 4 ⊢ ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = 1) |
28 | 27 | necon3i 2970 | . . 3 ⊢ ((abs‘(𝐴↑2)) ≠ 1 → (𝐴↑2) ≠ -1) |
29 | 21, 28 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ≠ -1) |
30 | atandm3 26830 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | |
31 | 1, 29, 30 | sylanbrc 581 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 class class class wbr 5152 dom cdm 5682 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 ℝcr 11145 0cc0 11146 1c1 11147 < clt 11286 ≤ cle 11287 -cneg 11483 2c2 12305 ℕ0cn0 12510 ↑cexp 14066 abscabs 15221 arctancatan 26816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-atan 26819 |
This theorem is referenced by: atantayl 26889 log2cnv 26896 |
Copyright terms: Public domain | W3C validator |