MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndatandm Structured version   Visualization version   GIF version

Theorem bndatandm 26816
Description: A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
bndatandm ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)

Proof of Theorem bndatandm
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
2 sqcl 14088 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
32adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ∈ ℂ)
43abscld 15389 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ∈ ℝ)
5 2nn0 12493 . . . . . 6 2 ∈ ℕ0
6 absexp 15257 . . . . . 6 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2))
71, 5, 6sylancl 585 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) = ((abs‘𝐴)↑2))
8 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
9 abscl 15231 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
11 1red 11219 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ)
12 absge0 15240 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
1312adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ (abs‘𝐴))
14 0le1 11741 . . . . . . . . 9 0 ≤ 1
1514a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 0 ≤ 1)
1610, 11, 13, 15lt2sqd 14224 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴) < 1 ↔ ((abs‘𝐴)↑2) < (1↑2)))
178, 16mpbid 231 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < (1↑2))
18 sq1 14164 . . . . . 6 (1↑2) = 1
1917, 18breqtrdi 5182 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((abs‘𝐴)↑2) < 1)
207, 19eqbrtrd 5163 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) < 1)
214, 20ltned 11354 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(𝐴↑2)) ≠ 1)
22 fveq2 6885 . . . . 5 ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = (abs‘-1))
23 ax-1cn 11170 . . . . . . 7 1 ∈ ℂ
2423absnegi 15353 . . . . . 6 (abs‘-1) = (abs‘1)
25 abs1 15250 . . . . . 6 (abs‘1) = 1
2624, 25eqtri 2754 . . . . 5 (abs‘-1) = 1
2722, 26eqtrdi 2782 . . . 4 ((𝐴↑2) = -1 → (abs‘(𝐴↑2)) = 1)
2827necon3i 2967 . . 3 ((abs‘(𝐴↑2)) ≠ 1 → (𝐴↑2) ≠ -1)
2921, 28syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑2) ≠ -1)
30 atandm3 26765 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1))
311, 29, 30sylanbrc 582 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934   class class class wbr 5141  dom cdm 5669  cfv 6537  (class class class)co 7405  cc 11110  cr 11111  0cc0 11112  1c1 11113   < clt 11252  cle 11253  -cneg 11449  2c2 12271  0cn0 12476  cexp 14032  abscabs 15187  arctancatan 26751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-seq 13973  df-exp 14033  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-atan 26754
This theorem is referenced by:  atantayl  26824  log2cnv  26831
  Copyright terms: Public domain W3C validator