MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atans2 Structured version   Visualization version   GIF version

Theorem atans2 25517
Description: It suffices to show that 1 − i𝐴 and 1 + i𝐴 are in the continuity domain of log to show that 𝐴 is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
atans2 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem atans2
StepHypRef Expression
1 sqcl 13480 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
21adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴↑2) ∈ ℂ)
32sqsqrtd 14791 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((√‘(𝐴↑2))↑2) = (𝐴↑2))
43eqcomd 2804 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴↑2) = ((√‘(𝐴↑2))↑2))
52sqrtcld 14789 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘(𝐴↑2)) ∈ ℂ)
6 sqeqor 13574 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (√‘(𝐴↑2)) ∈ ℂ) → ((𝐴↑2) = ((√‘(𝐴↑2))↑2) ↔ (𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2)))))
75, 6syldan 594 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((𝐴↑2) = ((√‘(𝐴↑2))↑2) ↔ (𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2)))))
84, 7mpbid 235 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2))))
9 1re 10630 . . . . . . . . . . . . . 14 1 ∈ ℝ
109a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 1 ∈ ℝ)
112negnegd 10977 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → --(𝐴↑2) = (𝐴↑2))
1211fveq2d 6649 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘--(𝐴↑2)) = (√‘(𝐴↑2)))
13 ax-1cn 10584 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
14 pncan2 10882 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((1 + (𝐴↑2)) − 1) = (𝐴↑2))
1513, 2, 14sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (𝐴↑2)) − 1) = (𝐴↑2))
16 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (𝐴↑2)) ∈ (-∞(,]0))
17 mnfxr 10687 . . . . . . . . . . . . . . . . . . . . . . . 24 -∞ ∈ ℝ*
18 0re 10632 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
19 elioc2 12788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝐴↑2)) ∈ ℝ ∧ -∞ < (1 + (𝐴↑2)) ∧ (1 + (𝐴↑2)) ≤ 0)))
2017, 18, 19mp2an 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝐴↑2)) ∈ ℝ ∧ -∞ < (1 + (𝐴↑2)) ∧ (1 + (𝐴↑2)) ≤ 0))
2116, 20sylib 221 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (𝐴↑2)) ∈ ℝ ∧ -∞ < (1 + (𝐴↑2)) ∧ (1 + (𝐴↑2)) ≤ 0))
2221simp1d 1139 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (𝐴↑2)) ∈ ℝ)
23 resubcl 10939 . . . . . . . . . . . . . . . . . . . . 21 (((1 + (𝐴↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + (𝐴↑2)) − 1) ∈ ℝ)
2422, 9, 23sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (𝐴↑2)) − 1) ∈ ℝ)
2515, 24eqeltrrd 2891 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴↑2) ∈ ℝ)
2625renegcld 11056 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -(𝐴↑2) ∈ ℝ)
27 0red 10633 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ∈ ℝ)
28 0le1 11152 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ≤ 1)
30 subneg 10924 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
3113, 2, 30sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
3221simp3d 1141 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (𝐴↑2)) ≤ 0)
3331, 32eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − -(𝐴↑2)) ≤ 0)
34 suble0 11143 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ -(𝐴↑2) ∈ ℝ) → ((1 − -(𝐴↑2)) ≤ 0 ↔ 1 ≤ -(𝐴↑2)))
359, 26, 34sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 − -(𝐴↑2)) ≤ 0 ↔ 1 ≤ -(𝐴↑2)))
3633, 35mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 1 ≤ -(𝐴↑2))
3727, 10, 26, 29, 36letrd 10786 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ≤ -(𝐴↑2))
3826, 37sqrtnegd 14773 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘--(𝐴↑2)) = (i · (√‘-(𝐴↑2))))
3912, 38eqtr3d 2835 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘(𝐴↑2)) = (i · (√‘-(𝐴↑2))))
4039oveq2d 7151 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) = (i · (i · (√‘-(𝐴↑2)))))
41 ax-icn 10585 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
4241a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → i ∈ ℂ)
4326, 37resqrtcld 14769 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘-(𝐴↑2)) ∈ ℝ)
4443recnd 10658 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘-(𝐴↑2)) ∈ ℂ)
4542, 42, 44mulassd 10653 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((i · i) · (√‘-(𝐴↑2))) = (i · (i · (√‘-(𝐴↑2)))))
46 ixi 11258 . . . . . . . . . . . . . . . . 17 (i · i) = -1
4746oveq1i 7145 . . . . . . . . . . . . . . . 16 ((i · i) · (√‘-(𝐴↑2))) = (-1 · (√‘-(𝐴↑2)))
4844mulm1d 11081 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (-1 · (√‘-(𝐴↑2))) = -(√‘-(𝐴↑2)))
4947, 48syl5eq 2845 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((i · i) · (√‘-(𝐴↑2))) = -(√‘-(𝐴↑2)))
5040, 45, 493eqtr2d 2839 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) = -(√‘-(𝐴↑2)))
5143renegcld 11056 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -(√‘-(𝐴↑2)) ∈ ℝ)
5250, 51eqeltrd 2890 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) ∈ ℝ)
5310, 52readdcld 10659 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) ∈ ℝ)
5453mnfltd 12507 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -∞ < (1 + (i · (√‘(𝐴↑2)))))
5550oveq2d 7151 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) = (1 + -(√‘-(𝐴↑2))))
56 negsub 10923 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (√‘-(𝐴↑2)) ∈ ℂ) → (1 + -(√‘-(𝐴↑2))) = (1 − (√‘-(𝐴↑2))))
5713, 44, 56sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + -(√‘-(𝐴↑2))) = (1 − (√‘-(𝐴↑2))))
5855, 57eqtrd 2833 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) = (1 − (√‘-(𝐴↑2))))
59 sq1 13554 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
6059a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1↑2) = 1)
6126recnd 10658 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -(𝐴↑2) ∈ ℂ)
6261sqsqrtd 14791 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((√‘-(𝐴↑2))↑2) = -(𝐴↑2))
6336, 60, 623brtr4d 5062 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1↑2) ≤ ((√‘-(𝐴↑2))↑2))
6426, 37sqrtge0d 14772 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ≤ (√‘-(𝐴↑2)))
6510, 43, 29, 64le2sqd 13616 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 ≤ (√‘-(𝐴↑2)) ↔ (1↑2) ≤ ((√‘-(𝐴↑2))↑2)))
6663, 65mpbird 260 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 1 ≤ (√‘-(𝐴↑2)))
6710, 43suble0d 11220 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 − (√‘-(𝐴↑2))) ≤ 0 ↔ 1 ≤ (√‘-(𝐴↑2))))
6866, 67mpbird 260 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (√‘-(𝐴↑2))) ≤ 0)
6958, 68eqbrtrd 5052 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) ≤ 0)
70 elioc2 12788 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0) ↔ ((1 + (i · (√‘(𝐴↑2)))) ∈ ℝ ∧ -∞ < (1 + (i · (√‘(𝐴↑2)))) ∧ (1 + (i · (√‘(𝐴↑2)))) ≤ 0)))
7117, 18, 70mp2an 691 . . . . . . . . . . . 12 ((1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0) ↔ ((1 + (i · (√‘(𝐴↑2)))) ∈ ℝ ∧ -∞ < (1 + (i · (√‘(𝐴↑2)))) ∧ (1 + (i · (√‘(𝐴↑2)))) ≤ 0))
7253, 54, 69, 71syl3anbrc 1340 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0))
73 oveq2 7143 . . . . . . . . . . . . 13 (𝐴 = (√‘(𝐴↑2)) → (i · 𝐴) = (i · (√‘(𝐴↑2))))
7473oveq2d 7151 . . . . . . . . . . . 12 (𝐴 = (√‘(𝐴↑2)) → (1 + (i · 𝐴)) = (1 + (i · (√‘(𝐴↑2)))))
7574eleq1d 2874 . . . . . . . . . . 11 (𝐴 = (√‘(𝐴↑2)) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ↔ (1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0)))
7672, 75syl5ibrcom 250 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴 = (√‘(𝐴↑2)) → (1 + (i · 𝐴)) ∈ (-∞(,]0)))
77 mulneg2 11066 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (√‘(𝐴↑2)) ∈ ℂ) → (i · -(√‘(𝐴↑2))) = -(i · (√‘(𝐴↑2))))
7841, 5, 77sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · -(√‘(𝐴↑2))) = -(i · (√‘(𝐴↑2))))
7978oveq2d 7151 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (i · -(√‘(𝐴↑2)))) = (1 − -(i · (√‘(𝐴↑2)))))
80 mulcl 10610 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (√‘(𝐴↑2)) ∈ ℂ) → (i · (√‘(𝐴↑2))) ∈ ℂ)
8141, 5, 80sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) ∈ ℂ)
82 subneg 10924 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · (√‘(𝐴↑2))) ∈ ℂ) → (1 − -(i · (√‘(𝐴↑2)))) = (1 + (i · (√‘(𝐴↑2)))))
8313, 81, 82sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − -(i · (√‘(𝐴↑2)))) = (1 + (i · (√‘(𝐴↑2)))))
8479, 83eqtrd 2833 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (i · -(√‘(𝐴↑2)))) = (1 + (i · (√‘(𝐴↑2)))))
8584, 72eqeltrd 2890 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (i · -(√‘(𝐴↑2)))) ∈ (-∞(,]0))
86 oveq2 7143 . . . . . . . . . . . . 13 (𝐴 = -(√‘(𝐴↑2)) → (i · 𝐴) = (i · -(√‘(𝐴↑2))))
8786oveq2d 7151 . . . . . . . . . . . 12 (𝐴 = -(√‘(𝐴↑2)) → (1 − (i · 𝐴)) = (1 − (i · -(√‘(𝐴↑2)))))
8887eleq1d 2874 . . . . . . . . . . 11 (𝐴 = -(√‘(𝐴↑2)) → ((1 − (i · 𝐴)) ∈ (-∞(,]0) ↔ (1 − (i · -(√‘(𝐴↑2)))) ∈ (-∞(,]0)))
8985, 88syl5ibrcom 250 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴 = -(√‘(𝐴↑2)) → (1 − (i · 𝐴)) ∈ (-∞(,]0)))
9076, 89orim12d 962 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2))) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 − (i · 𝐴)) ∈ (-∞(,]0))))
918, 90mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
9291orcomd 868 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
9359a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1↑2) = 1)
94 sqmul 13481 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
9541, 94mpan 689 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
96 i2 13561 . . . . . . . . . . . . . 14 (i↑2) = -1
9796oveq1i 7145 . . . . . . . . . . . . 13 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
981mulm1d 11081 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
9997, 98syl5eq 2845 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
10095, 99eqtrd 2833 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
10193, 100oveq12d 7153 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1↑2) − ((i · 𝐴)↑2)) = (1 − -(𝐴↑2)))
102 mulcl 10610 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
10341, 102mpan 689 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
104 subsq 13568 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
10513, 103, 104sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
10613, 1, 30sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
107101, 105, 1063eqtr3d 2841 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
108107adantr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
109 2cn 11700 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
110109a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 2 ∈ ℂ)
11113a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 1 ∈ ℂ)
112110, 111, 103subsubd 11014 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (2 − (1 − (i · 𝐴))) = ((2 − 1) + (i · 𝐴)))
113 2m1e1 11751 . . . . . . . . . . . . . . 15 (2 − 1) = 1
114113oveq1i 7145 . . . . . . . . . . . . . 14 ((2 − 1) + (i · 𝐴)) = (1 + (i · 𝐴))
115112, 114eqtrdi 2849 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 − (1 − (i · 𝐴))) = (1 + (i · 𝐴)))
116115adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 − (i · 𝐴))) = (1 + (i · 𝐴)))
117 2re 11699 . . . . . . . . . . . . 13 2 ∈ ℝ
118 simpr 488 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ (-∞(,]0))
119 elioc2 12788 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 − (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 − (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 − (i · 𝐴)) ∧ (1 − (i · 𝐴)) ≤ 0)))
12017, 18, 119mp2an 691 . . . . . . . . . . . . . . 15 ((1 − (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 − (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 − (i · 𝐴)) ∧ (1 − (i · 𝐴)) ≤ 0))
121118, 120sylib 221 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 − (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 − (i · 𝐴)) ∧ (1 − (i · 𝐴)) ≤ 0))
122121simp1d 1139 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ ℝ)
123 resubcl 10939 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (1 − (i · 𝐴)) ∈ ℝ) → (2 − (1 − (i · 𝐴))) ∈ ℝ)
124117, 122, 123sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 − (i · 𝐴))) ∈ ℝ)
125116, 124eqeltrrd 2891 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ ℝ)
126125, 122remulcld 10660 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ)
127126mnfltd 12507 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
128121simp3d 1141 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ≤ 0)
129 0red 10633 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 0 ∈ ℝ)
130117a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 2 ∈ ℝ)
131 2pos 11728 . . . . . . . . . . . . . . 15 0 < 2
132131a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 0 < 2)
133109subid1i 10947 . . . . . . . . . . . . . . . 16 (2 − 0) = 2
134122, 129, 130, 128lesub2dd 11246 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (2 − 0) ≤ (2 − (1 − (i · 𝐴))))
135133, 134eqbrtrrid 5066 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (2 − (1 − (i · 𝐴))))
136135, 116breqtrd 5056 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (1 + (i · 𝐴)))
137129, 130, 125, 132, 136ltletrd 10789 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 0 < (1 + (i · 𝐴)))
138 lemul2 11482 . . . . . . . . . . . . 13 (((1 − (i · 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 + (i · 𝐴)) ∈ ℝ ∧ 0 < (1 + (i · 𝐴)))) → ((1 − (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ ((1 + (i · 𝐴)) · 0)))
139122, 129, 125, 137, 138syl112anc 1371 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 − (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ ((1 + (i · 𝐴)) · 0)))
140128, 139mpbid 235 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ ((1 + (i · 𝐴)) · 0))
141 addcl 10608 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
14213, 103, 141sylancr 590 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) ∈ ℂ)
143142adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ ℂ)
144143mul01d 10828 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · 0) = 0)
145140, 144breqtrd 5056 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0)
146 elioc2 12788 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0) ↔ (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ ∧ -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∧ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0)))
14717, 18, 146mp2an 691 . . . . . . . . . 10 (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0) ↔ (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ ∧ -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∧ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0))
148126, 127, 145, 147syl3anbrc 1340 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0))
149 simpr 488 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ (-∞(,]0))
150 elioc2 12788 . . . . . . . . . . . . . 14 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 + (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 + (i · 𝐴)) ∧ (1 + (i · 𝐴)) ≤ 0)))
15117, 18, 150mp2an 691 . . . . . . . . . . . . 13 ((1 + (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 + (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 + (i · 𝐴)) ∧ (1 + (i · 𝐴)) ≤ 0))
152149, 151sylib 221 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 + (i · 𝐴)) ∧ (1 + (i · 𝐴)) ≤ 0))
153152simp1d 1139 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ ℝ)
154113oveq1i 7145 . . . . . . . . . . . . . 14 ((2 − 1) − (i · 𝐴)) = (1 − (i · 𝐴))
155110, 111, 103subsub4d 11017 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((2 − 1) − (i · 𝐴)) = (2 − (1 + (i · 𝐴))))
156154, 155syl5reqr 2848 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 − (1 + (i · 𝐴))) = (1 − (i · 𝐴)))
157156adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 + (i · 𝐴))) = (1 − (i · 𝐴)))
158 resubcl 10939 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (1 + (i · 𝐴)) ∈ ℝ) → (2 − (1 + (i · 𝐴))) ∈ ℝ)
159117, 153, 158sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 + (i · 𝐴))) ∈ ℝ)
160157, 159eqeltrrd 2891 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ ℝ)
161153, 160remulcld 10660 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ)
162161mnfltd 12507 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
163152simp3d 1141 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ≤ 0)
164 0red 10633 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 0 ∈ ℝ)
165117a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 2 ∈ ℝ)
166131a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 0 < 2)
167153, 164, 165, 163lesub2dd 11246 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (2 − 0) ≤ (2 − (1 + (i · 𝐴))))
168133, 167eqbrtrrid 5066 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (2 − (1 + (i · 𝐴))))
169168, 157breqtrd 5056 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (1 − (i · 𝐴)))
170164, 165, 160, 166, 169ltletrd 10789 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 0 < (1 − (i · 𝐴)))
171 lemul1 11481 . . . . . . . . . . . . 13 (((1 + (i · 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 − (i · 𝐴)) ∈ ℝ ∧ 0 < (1 − (i · 𝐴)))) → ((1 + (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ (0 · (1 − (i · 𝐴)))))
172153, 164, 160, 170, 171syl112anc 1371 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ (0 · (1 − (i · 𝐴)))))
173163, 172mpbid 235 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ (0 · (1 − (i · 𝐴))))
174160recnd 10658 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ ℂ)
175174mul02d 10827 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (0 · (1 − (i · 𝐴))) = 0)
176173, 175breqtrd 5056 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0)
177161, 162, 176, 147syl3anbrc 1340 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0))
178148, 177jaodan 955 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0))
179108, 178eqeltrrd 2891 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))) → (1 + (𝐴↑2)) ∈ (-∞(,]0))
18092, 179impbida 800 . . . . . 6 (𝐴 ∈ ℂ → ((1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
181180notbid 321 . . . . 5 (𝐴 ∈ ℂ → (¬ (1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ¬ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
182 ioran 981 . . . . 5 (¬ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0)) ↔ (¬ (1 − (i · 𝐴)) ∈ (-∞(,]0) ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
183181, 182syl6bb 290 . . . 4 (𝐴 ∈ ℂ → (¬ (1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ (¬ (1 − (i · 𝐴)) ∈ (-∞(,]0) ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
184 addcl 10608 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
18513, 1, 184sylancr 590 . . . . 5 (𝐴 ∈ ℂ → (1 + (𝐴↑2)) ∈ ℂ)
186 atansopn.d . . . . . . . 8 𝐷 = (ℂ ∖ (-∞(,]0))
187186eleq2i 2881 . . . . . . 7 ((1 + (𝐴↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ (ℂ ∖ (-∞(,]0)))
188 eldif 3891 . . . . . . 7 ((1 + (𝐴↑2)) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + (𝐴↑2)) ∈ ℂ ∧ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
189187, 188bitri 278 . . . . . 6 ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ((1 + (𝐴↑2)) ∈ ℂ ∧ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
190189baib 539 . . . . 5 ((1 + (𝐴↑2)) ∈ ℂ → ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
191185, 190syl 17 . . . 4 (𝐴 ∈ ℂ → ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
192 subcl 10874 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
19313, 103, 192sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (1 − (i · 𝐴)) ∈ ℂ)
194186eleq2i 2881 . . . . . . . 8 ((1 − (i · 𝐴)) ∈ 𝐷 ↔ (1 − (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)))
195 eldif 3891 . . . . . . . 8 ((1 − (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 − (i · 𝐴)) ∈ ℂ ∧ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
196194, 195bitri 278 . . . . . . 7 ((1 − (i · 𝐴)) ∈ 𝐷 ↔ ((1 − (i · 𝐴)) ∈ ℂ ∧ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
197196baib 539 . . . . . 6 ((1 − (i · 𝐴)) ∈ ℂ → ((1 − (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
198193, 197syl 17 . . . . 5 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
199186eleq2i 2881 . . . . . . . 8 ((1 + (i · 𝐴)) ∈ 𝐷 ↔ (1 + (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)))
200 eldif 3891 . . . . . . . 8 ((1 + (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + (i · 𝐴)) ∈ ℂ ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
201199, 200bitri 278 . . . . . . 7 ((1 + (i · 𝐴)) ∈ 𝐷 ↔ ((1 + (i · 𝐴)) ∈ ℂ ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
202201baib 539 . . . . . 6 ((1 + (i · 𝐴)) ∈ ℂ → ((1 + (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
203142, 202syl 17 . . . . 5 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
204198, 203anbi12d 633 . . . 4 (𝐴 ∈ ℂ → (((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷) ↔ (¬ (1 − (i · 𝐴)) ∈ (-∞(,]0) ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
205183, 191, 2043bitr4d 314 . . 3 (𝐴 ∈ ℂ → ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)))
206205pm5.32i 578 . 2 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)))
207 atansopn.s . . 3 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
208186, 207atans 25516 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
209 3anass 1092 . 2 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)))
210206, 208, 2093bitr4i 306 1 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  cdif 3878   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860  2c2 11680  (,]cioc 12727  cexp 13425  csqrt 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ioc 12731  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  dvatan  25521
  Copyright terms: Public domain W3C validator