Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  atans2 Structured version   Visualization version   GIF version

Theorem atans2 25616
 Description: It suffices to show that 1 − i𝐴 and 1 + i𝐴 are in the continuity domain of log to show that 𝐴 is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
atans2 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem atans2
StepHypRef Expression
1 sqcl 13534 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
21adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴↑2) ∈ ℂ)
32sqsqrtd 14847 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((√‘(𝐴↑2))↑2) = (𝐴↑2))
43eqcomd 2764 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴↑2) = ((√‘(𝐴↑2))↑2))
52sqrtcld 14845 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘(𝐴↑2)) ∈ ℂ)
6 sqeqor 13628 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (√‘(𝐴↑2)) ∈ ℂ) → ((𝐴↑2) = ((√‘(𝐴↑2))↑2) ↔ (𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2)))))
75, 6syldan 594 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((𝐴↑2) = ((√‘(𝐴↑2))↑2) ↔ (𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2)))))
84, 7mpbid 235 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2))))
9 1re 10679 . . . . . . . . . . . . . 14 1 ∈ ℝ
109a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 1 ∈ ℝ)
112negnegd 11026 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → --(𝐴↑2) = (𝐴↑2))
1211fveq2d 6662 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘--(𝐴↑2)) = (√‘(𝐴↑2)))
13 ax-1cn 10633 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
14 pncan2 10931 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((1 + (𝐴↑2)) − 1) = (𝐴↑2))
1513, 2, 14sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (𝐴↑2)) − 1) = (𝐴↑2))
16 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (𝐴↑2)) ∈ (-∞(,]0))
17 mnfxr 10736 . . . . . . . . . . . . . . . . . . . . . . . 24 -∞ ∈ ℝ*
18 0re 10681 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
19 elioc2 12842 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝐴↑2)) ∈ ℝ ∧ -∞ < (1 + (𝐴↑2)) ∧ (1 + (𝐴↑2)) ≤ 0)))
2017, 18, 19mp2an 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝐴↑2)) ∈ ℝ ∧ -∞ < (1 + (𝐴↑2)) ∧ (1 + (𝐴↑2)) ≤ 0))
2116, 20sylib 221 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (𝐴↑2)) ∈ ℝ ∧ -∞ < (1 + (𝐴↑2)) ∧ (1 + (𝐴↑2)) ≤ 0))
2221simp1d 1139 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (𝐴↑2)) ∈ ℝ)
23 resubcl 10988 . . . . . . . . . . . . . . . . . . . . 21 (((1 + (𝐴↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + (𝐴↑2)) − 1) ∈ ℝ)
2422, 9, 23sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (𝐴↑2)) − 1) ∈ ℝ)
2515, 24eqeltrrd 2853 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴↑2) ∈ ℝ)
2625renegcld 11105 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -(𝐴↑2) ∈ ℝ)
27 0red 10682 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ∈ ℝ)
28 0le1 11201 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ≤ 1)
30 subneg 10973 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
3113, 2, 30sylancr 590 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
3221simp3d 1141 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (𝐴↑2)) ≤ 0)
3331, 32eqbrtrd 5054 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − -(𝐴↑2)) ≤ 0)
34 suble0 11192 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ -(𝐴↑2) ∈ ℝ) → ((1 − -(𝐴↑2)) ≤ 0 ↔ 1 ≤ -(𝐴↑2)))
359, 26, 34sylancr 590 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 − -(𝐴↑2)) ≤ 0 ↔ 1 ≤ -(𝐴↑2)))
3633, 35mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 1 ≤ -(𝐴↑2))
3727, 10, 26, 29, 36letrd 10835 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ≤ -(𝐴↑2))
3826, 37sqrtnegd 14829 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘--(𝐴↑2)) = (i · (√‘-(𝐴↑2))))
3912, 38eqtr3d 2795 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘(𝐴↑2)) = (i · (√‘-(𝐴↑2))))
4039oveq2d 7166 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) = (i · (i · (√‘-(𝐴↑2)))))
41 ax-icn 10634 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
4241a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → i ∈ ℂ)
4326, 37resqrtcld 14825 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘-(𝐴↑2)) ∈ ℝ)
4443recnd 10707 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (√‘-(𝐴↑2)) ∈ ℂ)
4542, 42, 44mulassd 10702 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((i · i) · (√‘-(𝐴↑2))) = (i · (i · (√‘-(𝐴↑2)))))
46 ixi 11307 . . . . . . . . . . . . . . . . 17 (i · i) = -1
4746oveq1i 7160 . . . . . . . . . . . . . . . 16 ((i · i) · (√‘-(𝐴↑2))) = (-1 · (√‘-(𝐴↑2)))
4844mulm1d 11130 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (-1 · (√‘-(𝐴↑2))) = -(√‘-(𝐴↑2)))
4947, 48syl5eq 2805 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((i · i) · (√‘-(𝐴↑2))) = -(√‘-(𝐴↑2)))
5040, 45, 493eqtr2d 2799 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) = -(√‘-(𝐴↑2)))
5143renegcld 11105 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -(√‘-(𝐴↑2)) ∈ ℝ)
5250, 51eqeltrd 2852 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) ∈ ℝ)
5310, 52readdcld 10708 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) ∈ ℝ)
5453mnfltd 12560 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -∞ < (1 + (i · (√‘(𝐴↑2)))))
5550oveq2d 7166 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) = (1 + -(√‘-(𝐴↑2))))
56 negsub 10972 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (√‘-(𝐴↑2)) ∈ ℂ) → (1 + -(√‘-(𝐴↑2))) = (1 − (√‘-(𝐴↑2))))
5713, 44, 56sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + -(√‘-(𝐴↑2))) = (1 − (√‘-(𝐴↑2))))
5855, 57eqtrd 2793 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) = (1 − (√‘-(𝐴↑2))))
59 sq1 13608 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
6059a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1↑2) = 1)
6126recnd 10707 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → -(𝐴↑2) ∈ ℂ)
6261sqsqrtd 14847 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((√‘-(𝐴↑2))↑2) = -(𝐴↑2))
6336, 60, 623brtr4d 5064 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1↑2) ≤ ((√‘-(𝐴↑2))↑2))
6426, 37sqrtge0d 14828 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 0 ≤ (√‘-(𝐴↑2)))
6510, 43, 29, 64le2sqd 13670 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 ≤ (√‘-(𝐴↑2)) ↔ (1↑2) ≤ ((√‘-(𝐴↑2))↑2)))
6663, 65mpbird 260 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → 1 ≤ (√‘-(𝐴↑2)))
6710, 43suble0d 11269 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 − (√‘-(𝐴↑2))) ≤ 0 ↔ 1 ≤ (√‘-(𝐴↑2))))
6866, 67mpbird 260 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (√‘-(𝐴↑2))) ≤ 0)
6958, 68eqbrtrd 5054 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) ≤ 0)
70 elioc2 12842 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0) ↔ ((1 + (i · (√‘(𝐴↑2)))) ∈ ℝ ∧ -∞ < (1 + (i · (√‘(𝐴↑2)))) ∧ (1 + (i · (√‘(𝐴↑2)))) ≤ 0)))
7117, 18, 70mp2an 691 . . . . . . . . . . . 12 ((1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0) ↔ ((1 + (i · (√‘(𝐴↑2)))) ∈ ℝ ∧ -∞ < (1 + (i · (√‘(𝐴↑2)))) ∧ (1 + (i · (√‘(𝐴↑2)))) ≤ 0))
7253, 54, 69, 71syl3anbrc 1340 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0))
73 oveq2 7158 . . . . . . . . . . . . 13 (𝐴 = (√‘(𝐴↑2)) → (i · 𝐴) = (i · (√‘(𝐴↑2))))
7473oveq2d 7166 . . . . . . . . . . . 12 (𝐴 = (√‘(𝐴↑2)) → (1 + (i · 𝐴)) = (1 + (i · (√‘(𝐴↑2)))))
7574eleq1d 2836 . . . . . . . . . . 11 (𝐴 = (√‘(𝐴↑2)) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ↔ (1 + (i · (√‘(𝐴↑2)))) ∈ (-∞(,]0)))
7672, 75syl5ibrcom 250 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴 = (√‘(𝐴↑2)) → (1 + (i · 𝐴)) ∈ (-∞(,]0)))
77 mulneg2 11115 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (√‘(𝐴↑2)) ∈ ℂ) → (i · -(√‘(𝐴↑2))) = -(i · (√‘(𝐴↑2))))
7841, 5, 77sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · -(√‘(𝐴↑2))) = -(i · (√‘(𝐴↑2))))
7978oveq2d 7166 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (i · -(√‘(𝐴↑2)))) = (1 − -(i · (√‘(𝐴↑2)))))
80 mulcl 10659 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ (√‘(𝐴↑2)) ∈ ℂ) → (i · (√‘(𝐴↑2))) ∈ ℂ)
8141, 5, 80sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (i · (√‘(𝐴↑2))) ∈ ℂ)
82 subneg 10973 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · (√‘(𝐴↑2))) ∈ ℂ) → (1 − -(i · (√‘(𝐴↑2)))) = (1 + (i · (√‘(𝐴↑2)))))
8313, 81, 82sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − -(i · (√‘(𝐴↑2)))) = (1 + (i · (√‘(𝐴↑2)))))
8479, 83eqtrd 2793 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (i · -(√‘(𝐴↑2)))) = (1 + (i · (√‘(𝐴↑2)))))
8584, 72eqeltrd 2852 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (1 − (i · -(√‘(𝐴↑2)))) ∈ (-∞(,]0))
86 oveq2 7158 . . . . . . . . . . . . 13 (𝐴 = -(√‘(𝐴↑2)) → (i · 𝐴) = (i · -(√‘(𝐴↑2))))
8786oveq2d 7166 . . . . . . . . . . . 12 (𝐴 = -(√‘(𝐴↑2)) → (1 − (i · 𝐴)) = (1 − (i · -(√‘(𝐴↑2)))))
8887eleq1d 2836 . . . . . . . . . . 11 (𝐴 = -(√‘(𝐴↑2)) → ((1 − (i · 𝐴)) ∈ (-∞(,]0) ↔ (1 − (i · -(√‘(𝐴↑2)))) ∈ (-∞(,]0)))
8985, 88syl5ibrcom 250 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → (𝐴 = -(√‘(𝐴↑2)) → (1 − (i · 𝐴)) ∈ (-∞(,]0)))
9076, 89orim12d 962 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((𝐴 = (√‘(𝐴↑2)) ∨ 𝐴 = -(√‘(𝐴↑2))) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 − (i · 𝐴)) ∈ (-∞(,]0))))
918, 90mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
9291orcomd 868 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ (-∞(,]0)) → ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
9359a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (1↑2) = 1)
94 sqmul 13535 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
9541, 94mpan 689 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = ((i↑2) · (𝐴↑2)))
96 i2 13615 . . . . . . . . . . . . . 14 (i↑2) = -1
9796oveq1i 7160 . . . . . . . . . . . . 13 ((i↑2) · (𝐴↑2)) = (-1 · (𝐴↑2))
981mulm1d 11130 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 · (𝐴↑2)) = -(𝐴↑2))
9997, 98syl5eq 2805 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((i↑2) · (𝐴↑2)) = -(𝐴↑2))
10095, 99eqtrd 2793 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · 𝐴)↑2) = -(𝐴↑2))
10193, 100oveq12d 7168 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1↑2) − ((i · 𝐴)↑2)) = (1 − -(𝐴↑2)))
102 mulcl 10659 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
10341, 102mpan 689 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
104 subsq 13622 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
10513, 103, 104sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((1↑2) − ((i · 𝐴)↑2)) = ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
10613, 1, 30sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ℂ → (1 − -(𝐴↑2)) = (1 + (𝐴↑2)))
107101, 105, 1063eqtr3d 2801 . . . . . . . . 9 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
108107adantr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) = (1 + (𝐴↑2)))
109 2cn 11749 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
110109a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 2 ∈ ℂ)
11113a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → 1 ∈ ℂ)
112110, 111, 103subsubd 11063 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (2 − (1 − (i · 𝐴))) = ((2 − 1) + (i · 𝐴)))
113 2m1e1 11800 . . . . . . . . . . . . . . 15 (2 − 1) = 1
114113oveq1i 7160 . . . . . . . . . . . . . 14 ((2 − 1) + (i · 𝐴)) = (1 + (i · 𝐴))
115112, 114eqtrdi 2809 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 − (1 − (i · 𝐴))) = (1 + (i · 𝐴)))
116115adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 − (i · 𝐴))) = (1 + (i · 𝐴)))
117 2re 11748 . . . . . . . . . . . . 13 2 ∈ ℝ
118 simpr 488 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ (-∞(,]0))
119 elioc2 12842 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 − (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 − (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 − (i · 𝐴)) ∧ (1 − (i · 𝐴)) ≤ 0)))
12017, 18, 119mp2an 691 . . . . . . . . . . . . . . 15 ((1 − (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 − (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 − (i · 𝐴)) ∧ (1 − (i · 𝐴)) ≤ 0))
121118, 120sylib 221 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 − (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 − (i · 𝐴)) ∧ (1 − (i · 𝐴)) ≤ 0))
122121simp1d 1139 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ ℝ)
123 resubcl 10988 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (1 − (i · 𝐴)) ∈ ℝ) → (2 − (1 − (i · 𝐴))) ∈ ℝ)
124117, 122, 123sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 − (i · 𝐴))) ∈ ℝ)
125116, 124eqeltrrd 2853 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ ℝ)
126125, 122remulcld 10709 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ)
127126mnfltd 12560 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
128121simp3d 1141 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ≤ 0)
129 0red 10682 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 0 ∈ ℝ)
130117a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 2 ∈ ℝ)
131 2pos 11777 . . . . . . . . . . . . . . 15 0 < 2
132131a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 0 < 2)
133109subid1i 10996 . . . . . . . . . . . . . . . 16 (2 − 0) = 2
134122, 129, 130, 128lesub2dd 11295 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (2 − 0) ≤ (2 − (1 − (i · 𝐴))))
135133, 134eqbrtrrid 5068 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (2 − (1 − (i · 𝐴))))
136135, 116breqtrd 5058 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (1 + (i · 𝐴)))
137129, 130, 125, 132, 136ltletrd 10838 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → 0 < (1 + (i · 𝐴)))
138 lemul2 11531 . . . . . . . . . . . . 13 (((1 − (i · 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 + (i · 𝐴)) ∈ ℝ ∧ 0 < (1 + (i · 𝐴)))) → ((1 − (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ ((1 + (i · 𝐴)) · 0)))
139122, 129, 125, 137, 138syl112anc 1371 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 − (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ ((1 + (i · 𝐴)) · 0)))
140128, 139mpbid 235 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ ((1 + (i · 𝐴)) · 0))
141 addcl 10657 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
14213, 103, 141sylancr 590 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (1 + (i · 𝐴)) ∈ ℂ)
143142adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ ℂ)
144143mul01d 10877 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · 0) = 0)
145140, 144breqtrd 5058 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0)
146 elioc2 12842 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0) ↔ (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ ∧ -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∧ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0)))
14717, 18, 146mp2an 691 . . . . . . . . . 10 (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0) ↔ (((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ ∧ -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∧ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0))
148126, 127, 145, 147syl3anbrc 1340 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0))
149 simpr 488 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ (-∞(,]0))
150 elioc2 12842 . . . . . . . . . . . . . 14 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 + (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 + (i · 𝐴)) ∧ (1 + (i · 𝐴)) ≤ 0)))
15117, 18, 150mp2an 691 . . . . . . . . . . . . 13 ((1 + (i · 𝐴)) ∈ (-∞(,]0) ↔ ((1 + (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 + (i · 𝐴)) ∧ (1 + (i · 𝐴)) ≤ 0))
152149, 151sylib 221 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) ∈ ℝ ∧ -∞ < (1 + (i · 𝐴)) ∧ (1 + (i · 𝐴)) ≤ 0))
153152simp1d 1139 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ∈ ℝ)
154113oveq1i 7160 . . . . . . . . . . . . . 14 ((2 − 1) − (i · 𝐴)) = (1 − (i · 𝐴))
155110, 111, 103subsub4d 11066 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((2 − 1) − (i · 𝐴)) = (2 − (1 + (i · 𝐴))))
156154, 155syl5reqr 2808 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 − (1 + (i · 𝐴))) = (1 − (i · 𝐴)))
157156adantr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 + (i · 𝐴))) = (1 − (i · 𝐴)))
158 resubcl 10988 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (1 + (i · 𝐴)) ∈ ℝ) → (2 − (1 + (i · 𝐴))) ∈ ℝ)
159117, 153, 158sylancr 590 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (2 − (1 + (i · 𝐴))) ∈ ℝ)
160157, 159eqeltrrd 2853 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ ℝ)
161153, 160remulcld 10709 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ ℝ)
162161mnfltd 12560 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → -∞ < ((1 + (i · 𝐴)) · (1 − (i · 𝐴))))
163152simp3d 1141 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 + (i · 𝐴)) ≤ 0)
164 0red 10682 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 0 ∈ ℝ)
165117a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 2 ∈ ℝ)
166131a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 0 < 2)
167153, 164, 165, 163lesub2dd 11295 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (2 − 0) ≤ (2 − (1 + (i · 𝐴))))
168133, 167eqbrtrrid 5068 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (2 − (1 + (i · 𝐴))))
169168, 157breqtrd 5058 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 2 ≤ (1 − (i · 𝐴)))
170164, 165, 160, 166, 169ltletrd 10838 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → 0 < (1 − (i · 𝐴)))
171 lemul1 11530 . . . . . . . . . . . . 13 (((1 + (i · 𝐴)) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((1 − (i · 𝐴)) ∈ ℝ ∧ 0 < (1 − (i · 𝐴)))) → ((1 + (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ (0 · (1 − (i · 𝐴)))))
172153, 164, 160, 170, 171syl112anc 1371 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) ≤ 0 ↔ ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ (0 · (1 − (i · 𝐴)))))
173163, 172mpbid 235 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ (0 · (1 − (i · 𝐴))))
174160recnd 10707 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (1 − (i · 𝐴)) ∈ ℂ)
175174mul02d 10876 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → (0 · (1 − (i · 𝐴))) = 0)
176173, 175breqtrd 5058 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ≤ 0)
177161, 162, 176, 147syl3anbrc 1340 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (1 + (i · 𝐴)) ∈ (-∞(,]0)) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0))
178148, 177jaodan 955 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))) → ((1 + (i · 𝐴)) · (1 − (i · 𝐴))) ∈ (-∞(,]0))
179108, 178eqeltrrd 2853 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))) → (1 + (𝐴↑2)) ∈ (-∞(,]0))
18092, 179impbida 800 . . . . . 6 (𝐴 ∈ ℂ → ((1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
181180notbid 321 . . . . 5 (𝐴 ∈ ℂ → (¬ (1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ ¬ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
182 ioran 981 . . . . 5 (¬ ((1 − (i · 𝐴)) ∈ (-∞(,]0) ∨ (1 + (i · 𝐴)) ∈ (-∞(,]0)) ↔ (¬ (1 − (i · 𝐴)) ∈ (-∞(,]0) ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
183181, 182bitrdi 290 . . . 4 (𝐴 ∈ ℂ → (¬ (1 + (𝐴↑2)) ∈ (-∞(,]0) ↔ (¬ (1 − (i · 𝐴)) ∈ (-∞(,]0) ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
184 addcl 10657 . . . . . 6 ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 + (𝐴↑2)) ∈ ℂ)
18513, 1, 184sylancr 590 . . . . 5 (𝐴 ∈ ℂ → (1 + (𝐴↑2)) ∈ ℂ)
186 atansopn.d . . . . . . . 8 𝐷 = (ℂ ∖ (-∞(,]0))
187186eleq2i 2843 . . . . . . 7 ((1 + (𝐴↑2)) ∈ 𝐷 ↔ (1 + (𝐴↑2)) ∈ (ℂ ∖ (-∞(,]0)))
188 eldif 3868 . . . . . . 7 ((1 + (𝐴↑2)) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + (𝐴↑2)) ∈ ℂ ∧ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
189187, 188bitri 278 . . . . . 6 ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ((1 + (𝐴↑2)) ∈ ℂ ∧ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
190189baib 539 . . . . 5 ((1 + (𝐴↑2)) ∈ ℂ → ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
191185, 190syl 17 . . . 4 (𝐴 ∈ ℂ → ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ¬ (1 + (𝐴↑2)) ∈ (-∞(,]0)))
192 subcl 10923 . . . . . . 7 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
19313, 103, 192sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (1 − (i · 𝐴)) ∈ ℂ)
194186eleq2i 2843 . . . . . . . 8 ((1 − (i · 𝐴)) ∈ 𝐷 ↔ (1 − (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)))
195 eldif 3868 . . . . . . . 8 ((1 − (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 − (i · 𝐴)) ∈ ℂ ∧ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
196194, 195bitri 278 . . . . . . 7 ((1 − (i · 𝐴)) ∈ 𝐷 ↔ ((1 − (i · 𝐴)) ∈ ℂ ∧ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
197196baib 539 . . . . . 6 ((1 − (i · 𝐴)) ∈ ℂ → ((1 − (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
198193, 197syl 17 . . . . 5 (𝐴 ∈ ℂ → ((1 − (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 − (i · 𝐴)) ∈ (-∞(,]0)))
199186eleq2i 2843 . . . . . . . 8 ((1 + (i · 𝐴)) ∈ 𝐷 ↔ (1 + (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)))
200 eldif 3868 . . . . . . . 8 ((1 + (i · 𝐴)) ∈ (ℂ ∖ (-∞(,]0)) ↔ ((1 + (i · 𝐴)) ∈ ℂ ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
201199, 200bitri 278 . . . . . . 7 ((1 + (i · 𝐴)) ∈ 𝐷 ↔ ((1 + (i · 𝐴)) ∈ ℂ ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
202201baib 539 . . . . . 6 ((1 + (i · 𝐴)) ∈ ℂ → ((1 + (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
203142, 202syl 17 . . . . 5 (𝐴 ∈ ℂ → ((1 + (i · 𝐴)) ∈ 𝐷 ↔ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0)))
204198, 203anbi12d 633 . . . 4 (𝐴 ∈ ℂ → (((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷) ↔ (¬ (1 − (i · 𝐴)) ∈ (-∞(,]0) ∧ ¬ (1 + (i · 𝐴)) ∈ (-∞(,]0))))
205183, 191, 2043bitr4d 314 . . 3 (𝐴 ∈ ℂ → ((1 + (𝐴↑2)) ∈ 𝐷 ↔ ((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)))
206205pm5.32i 578 . 2 ((𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)))
207 atansopn.s . . 3 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
208186, 207atans 25615 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷))
209 3anass 1092 . 2 ((𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷) ↔ (𝐴 ∈ ℂ ∧ ((1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)))
210206, 208, 2093bitr4i 306 1 (𝐴𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {crab 3074   ∖ cdif 3855   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576  ici 10577   + caddc 10578   · cmul 10580  -∞cmnf 10711  ℝ*cxr 10712   < clt 10713   ≤ cle 10714   − cmin 10908  -cneg 10909  2c2 11729  (,]cioc 12780  ↑cexp 13479  √csqrt 14640 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-ioc 12784  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643 This theorem is referenced by:  dvatan  25620
 Copyright terms: Public domain W3C validator