Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem3 Structured version   Visualization version   GIF version

Theorem axacndlem3 10020
 Description: Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2391. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axacndlem3 (∀𝑦 𝑦 = 𝑧 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))

Proof of Theorem axacndlem3
StepHypRef Expression
1 nfae 2456 . . . 4 𝑧𝑦 𝑦 = 𝑧
2 simpl 486 . . . . . 6 ((𝑦𝑧𝑧𝑤) → 𝑦𝑧)
32alimi 1813 . . . . 5 (∀𝑥(𝑦𝑧𝑧𝑤) → ∀𝑥 𝑦𝑧)
4 nd3 10000 . . . . . 6 (∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑥 𝑦𝑧)
54pm2.21d 121 . . . . 5 (∀𝑦 𝑦 = 𝑧 → (∀𝑥 𝑦𝑧 → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
63, 5syl5 34 . . . 4 (∀𝑦 𝑦 = 𝑧 → (∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
71, 6alrimi 2214 . . 3 (∀𝑦 𝑦 = 𝑧 → ∀𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
87axc4i 2342 . 2 (∀𝑦 𝑦 = 𝑧 → ∀𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
9819.8ad 2182 1 (∀𝑦 𝑦 = 𝑧 → ∃𝑥𝑦𝑧(∀𝑥(𝑦𝑧𝑧𝑤) → ∃𝑤𝑦(∃𝑤((𝑦𝑧𝑧𝑤) ∧ (𝑦𝑤𝑤𝑥)) ↔ 𝑦 = 𝑤)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-13 2391  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-reg 9044 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-v 3471  df-dif 3911  df-un 3913  df-nul 4266  df-sn 4540  df-pr 4542 This theorem is referenced by:  axacndlem5  10022  axacnd  10023
 Copyright terms: Public domain W3C validator