HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhilex-zf Structured version   Visualization version   GIF version

Theorem axhilex-zf 30917
Description: Derive Axiom ax-hilex 30935 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhilex-zf ℋ ∈ V

Proof of Theorem axhilex-zf
StepHypRef Expression
1 df-hba 30905 . 2 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
21hlex 30834 1 ℋ ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3455  cop 4603  CHilOLDchlo 30821  chba 30855   + cva 30856   · csm 30857  normcno 30859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5269
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-sn 4598  df-pr 4600  df-uni 4880  df-iota 6472  df-fv 6527  df-hba 30905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator