Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > axhilex-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hilex 29262 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhilex-zf | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hba 29232 | . 2 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
2 | 1 | hlex 29161 | 1 ⊢ ℋ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 CHilOLDchlo 29148 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 normℎcno 29186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-fv 6426 df-hba 29232 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |