| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhilex-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hilex 30969 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhilex-zf | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hba 30939 | . 2 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 2 | 1 | hlex 30868 | 1 ⊢ ℋ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 Vcvv 3434 〈cop 4580 CHilOLDchlo 30855 ℋchba 30889 +ℎ cva 30890 ·ℎ csm 30891 normℎcno 30893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-sn 4575 df-pr 4577 df-uni 4858 df-iota 6433 df-fv 6485 df-hba 30939 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |