| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhilex-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hilex 30990 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhilex-zf | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hba 30960 | . 2 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 2 | 1 | hlex 30889 | 1 ⊢ ℋ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3438 〈cop 4583 CHilOLDchlo 30876 ℋchba 30910 +ℎ cva 30911 ·ℎ csm 30912 normℎcno 30914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6445 df-fv 6497 df-hba 30960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |