HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhilex-zf Structured version   Visualization version   GIF version

Theorem axhilex-zf 30894
Description: Derive Axiom ax-hilex 30912 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhilex-zf ℋ ∈ V

Proof of Theorem axhilex-zf
StepHypRef Expression
1 df-hba 30882 . 2 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
21hlex 30811 1 ℋ ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605  CHilOLDchlo 30798  chba 30832   + cva 30833   · csm 30834  normcno 30836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5273
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-sn 4600  df-pr 4602  df-uni 4881  df-iota 6480  df-fv 6535  df-hba 30882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator