![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axhilex-zf | Structured version Visualization version GIF version |
Description: Derive axiom ax-hilex 28442 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhilex-zf | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hba 28412 | . 2 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
2 | 1 | hlex 28340 | 1 ⊢ ℋ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2106 Vcvv 3397 〈cop 4403 CHilOLDchlo 28327 ℋchba 28362 +ℎ cva 28363 ·ℎ csm 28364 normℎcno 28366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-nul 5025 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-sn 4398 df-pr 4400 df-uni 4672 df-iota 6099 df-fv 6143 df-hba 28412 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |