HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhilex-zf Structured version   Visualization version   GIF version

Theorem axhilex-zf 28424
Description: Derive axiom ax-hilex 28442 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhilex-zf ℋ ∈ V

Proof of Theorem axhilex-zf
StepHypRef Expression
1 df-hba 28412 . 2 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
21hlex 28340 1 ℋ ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  Vcvv 3397  cop 4403  CHilOLDchlo 28327  chba 28362   + cva 28363   · csm 28364  normcno 28366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-nul 5025
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-sn 4398  df-pr 4400  df-uni 4672  df-iota 6099  df-fv 6143  df-hba 28412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator