| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > axhilex-zf | Structured version Visualization version GIF version | ||
| Description: Derive Axiom ax-hilex 30912 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
| axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
| Ref | Expression |
|---|---|
| axhilex-zf | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hba 30882 | . 2 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 2 | 1 | hlex 30811 | 1 ⊢ ℋ ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3457 〈cop 4605 CHilOLDchlo 30798 ℋchba 30832 +ℎ cva 30833 ·ℎ csm 30834 normℎcno 30836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5273 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-sn 4600 df-pr 4602 df-uni 4881 df-iota 6480 df-fv 6535 df-hba 30882 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |