HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhilex-zf Structured version   Visualization version   GIF version

Theorem axhilex-zf 30951
Description: Derive Axiom ax-hilex 30969 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhilex-zf ℋ ∈ V

Proof of Theorem axhilex-zf
StepHypRef Expression
1 df-hba 30939 . 2 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
21hlex 30868 1 ℋ ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  Vcvv 3434  cop 4580  CHilOLDchlo 30855  chba 30889   + cva 30890   · csm 30891  normcno 30893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-sn 4575  df-pr 4577  df-uni 4858  df-iota 6433  df-fv 6485  df-hba 30939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator