HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhilex-zf Structured version   Visualization version   GIF version

Theorem axhilex-zf 30972
Description: Derive Axiom ax-hilex 30990 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhilex-zf ℋ ∈ V

Proof of Theorem axhilex-zf
StepHypRef Expression
1 df-hba 30960 . 2 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
21hlex 30889 1 ℋ ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  Vcvv 3438  cop 4583  CHilOLDchlo 30876  chba 30910   + cva 30911   · csm 30912  normcno 30914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-sn 4578  df-pr 4580  df-uni 4861  df-iota 6445  df-fv 6497  df-hba 30960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator