| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version | ||
| Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hilex | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30897 | . 2 class ℋ | |
| 2 | cvv 3436 | . 2 class V | |
| 3 | 1, 2 | wcel 2111 | 1 wff ℋ ∈ V |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmulex 30989 hilablo 31138 hhph 31156 hcau 31162 hlimadd 31171 hhcms 31181 issh 31186 shex 31190 hlim0 31213 hhssva 31235 hhsssm 31236 hhssnm 31237 hhshsslem1 31245 hhsscms 31256 ocval 31258 spanval 31311 hsupval 31312 sshjval 31328 sshjval3 31332 pjhfval 31374 pjmfn 31693 pjmf1 31694 hosmval 31713 hommval 31714 hodmval 31715 hfsmval 31716 hfmmval 31717 nmopval 31834 elcnop 31835 ellnop 31836 elunop 31850 elhmop 31851 hmopex 31853 nmfnval 31854 nlfnval 31859 elcnfn 31860 ellnfn 31861 dmadjss 31865 dmadjop 31866 adjeu 31867 adjval 31868 eigvecval 31874 eigvalfval 31875 specval 31876 hhcno 31882 hhcnf 31883 adjeq 31913 brafval 31921 kbfval 31930 adjbdln 32061 rnbra 32085 bra11 32086 leoprf2 32105 ishst 32192 |
| Copyright terms: Public domain | W3C validator |