![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30757 | . 2 class ℋ | |
2 | cvv 3473 | . 2 class V | |
3 | 1, 2 | wcel 2098 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 30849 hilablo 30998 hhph 31016 hcau 31022 hlimadd 31031 hhcms 31041 issh 31046 shex 31050 hlim0 31073 hhssva 31095 hhsssm 31096 hhssnm 31097 hhshsslem1 31105 hhsscms 31116 ocval 31118 spanval 31171 hsupval 31172 sshjval 31188 sshjval3 31192 pjhfval 31234 pjmfn 31553 pjmf1 31554 hosmval 31573 hommval 31574 hodmval 31575 hfsmval 31576 hfmmval 31577 nmopval 31694 elcnop 31695 ellnop 31696 elunop 31710 elhmop 31711 hmopex 31713 nmfnval 31714 nlfnval 31719 elcnfn 31720 ellnfn 31721 dmadjss 31725 dmadjop 31726 adjeu 31727 adjval 31728 eigvecval 31734 eigvalfval 31735 specval 31736 hhcno 31742 hhcnf 31743 adjeq 31773 brafval 31781 kbfval 31790 adjbdln 31921 rnbra 31945 bra11 31946 leoprf2 31965 ishst 32052 |
Copyright terms: Public domain | W3C validator |