![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30439 | . 2 class ℋ | |
2 | cvv 3472 | . 2 class V | |
3 | 1, 2 | wcel 2104 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 30531 hilablo 30680 hhph 30698 hcau 30704 hlimadd 30713 hhcms 30723 issh 30728 shex 30732 hlim0 30755 hhssva 30777 hhsssm 30778 hhssnm 30779 hhshsslem1 30787 hhsscms 30798 ocval 30800 spanval 30853 hsupval 30854 sshjval 30870 sshjval3 30874 pjhfval 30916 pjmfn 31235 pjmf1 31236 hosmval 31255 hommval 31256 hodmval 31257 hfsmval 31258 hfmmval 31259 nmopval 31376 elcnop 31377 ellnop 31378 elunop 31392 elhmop 31393 hmopex 31395 nmfnval 31396 nlfnval 31401 elcnfn 31402 ellnfn 31403 dmadjss 31407 dmadjop 31408 adjeu 31409 adjval 31410 eigvecval 31416 eigvalfval 31417 specval 31418 hhcno 31424 hhcnf 31425 adjeq 31455 brafval 31463 kbfval 31472 adjbdln 31603 rnbra 31627 bra11 31628 leoprf2 31647 ishst 31734 |
Copyright terms: Public domain | W3C validator |