![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30951 | . 2 class ℋ | |
2 | cvv 3488 | . 2 class V | |
3 | 1, 2 | wcel 2108 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 31043 hilablo 31192 hhph 31210 hcau 31216 hlimadd 31225 hhcms 31235 issh 31240 shex 31244 hlim0 31267 hhssva 31289 hhsssm 31290 hhssnm 31291 hhshsslem1 31299 hhsscms 31310 ocval 31312 spanval 31365 hsupval 31366 sshjval 31382 sshjval3 31386 pjhfval 31428 pjmfn 31747 pjmf1 31748 hosmval 31767 hommval 31768 hodmval 31769 hfsmval 31770 hfmmval 31771 nmopval 31888 elcnop 31889 ellnop 31890 elunop 31904 elhmop 31905 hmopex 31907 nmfnval 31908 nlfnval 31913 elcnfn 31914 ellnfn 31915 dmadjss 31919 dmadjop 31920 adjeu 31921 adjval 31922 eigvecval 31928 eigvalfval 31929 specval 31930 hhcno 31936 hhcnf 31937 adjeq 31967 brafval 31975 kbfval 31984 adjbdln 32115 rnbra 32139 bra11 32140 leoprf2 32159 ishst 32246 |
Copyright terms: Public domain | W3C validator |