| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version | ||
| Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hilex | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30848 | . 2 class ℋ | |
| 2 | cvv 3447 | . 2 class V | |
| 3 | 1, 2 | wcel 2109 | 1 wff ℋ ∈ V |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmulex 30940 hilablo 31089 hhph 31107 hcau 31113 hlimadd 31122 hhcms 31132 issh 31137 shex 31141 hlim0 31164 hhssva 31186 hhsssm 31187 hhssnm 31188 hhshsslem1 31196 hhsscms 31207 ocval 31209 spanval 31262 hsupval 31263 sshjval 31279 sshjval3 31283 pjhfval 31325 pjmfn 31644 pjmf1 31645 hosmval 31664 hommval 31665 hodmval 31666 hfsmval 31667 hfmmval 31668 nmopval 31785 elcnop 31786 ellnop 31787 elunop 31801 elhmop 31802 hmopex 31804 nmfnval 31805 nlfnval 31810 elcnfn 31811 ellnfn 31812 dmadjss 31816 dmadjop 31817 adjeu 31818 adjval 31819 eigvecval 31825 eigvalfval 31826 specval 31827 hhcno 31833 hhcnf 31834 adjeq 31864 brafval 31872 kbfval 31881 adjbdln 32012 rnbra 32036 bra11 32037 leoprf2 32056 ishst 32143 |
| Copyright terms: Public domain | W3C validator |