| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version | ||
| Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hilex | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30855 | . 2 class ℋ | |
| 2 | cvv 3450 | . 2 class V | |
| 3 | 1, 2 | wcel 2109 | 1 wff ℋ ∈ V |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmulex 30947 hilablo 31096 hhph 31114 hcau 31120 hlimadd 31129 hhcms 31139 issh 31144 shex 31148 hlim0 31171 hhssva 31193 hhsssm 31194 hhssnm 31195 hhshsslem1 31203 hhsscms 31214 ocval 31216 spanval 31269 hsupval 31270 sshjval 31286 sshjval3 31290 pjhfval 31332 pjmfn 31651 pjmf1 31652 hosmval 31671 hommval 31672 hodmval 31673 hfsmval 31674 hfmmval 31675 nmopval 31792 elcnop 31793 ellnop 31794 elunop 31808 elhmop 31809 hmopex 31811 nmfnval 31812 nlfnval 31817 elcnfn 31818 ellnfn 31819 dmadjss 31823 dmadjop 31824 adjeu 31825 adjval 31826 eigvecval 31832 eigvalfval 31833 specval 31834 hhcno 31840 hhcnf 31841 adjeq 31871 brafval 31879 kbfval 31888 adjbdln 32019 rnbra 32043 bra11 32044 leoprf2 32063 ishst 32150 |
| Copyright terms: Public domain | W3C validator |