![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 30947 | . 2 class ℋ | |
2 | cvv 3477 | . 2 class V | |
3 | 1, 2 | wcel 2105 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 31039 hilablo 31188 hhph 31206 hcau 31212 hlimadd 31221 hhcms 31231 issh 31236 shex 31240 hlim0 31263 hhssva 31285 hhsssm 31286 hhssnm 31287 hhshsslem1 31295 hhsscms 31306 ocval 31308 spanval 31361 hsupval 31362 sshjval 31378 sshjval3 31382 pjhfval 31424 pjmfn 31743 pjmf1 31744 hosmval 31763 hommval 31764 hodmval 31765 hfsmval 31766 hfmmval 31767 nmopval 31884 elcnop 31885 ellnop 31886 elunop 31900 elhmop 31901 hmopex 31903 nmfnval 31904 nlfnval 31909 elcnfn 31910 ellnfn 31911 dmadjss 31915 dmadjop 31916 adjeu 31917 adjval 31918 eigvecval 31924 eigvalfval 31925 specval 31926 hhcno 31932 hhcnf 31933 adjeq 31963 brafval 31971 kbfval 31980 adjbdln 32111 rnbra 32135 bra11 32136 leoprf2 32155 ishst 32242 |
Copyright terms: Public domain | W3C validator |