| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version | ||
| Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hilex | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30881 | . 2 class ℋ | |
| 2 | cvv 3438 | . 2 class V | |
| 3 | 1, 2 | wcel 2109 | 1 wff ℋ ∈ V |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmulex 30973 hilablo 31122 hhph 31140 hcau 31146 hlimadd 31155 hhcms 31165 issh 31170 shex 31174 hlim0 31197 hhssva 31219 hhsssm 31220 hhssnm 31221 hhshsslem1 31229 hhsscms 31240 ocval 31242 spanval 31295 hsupval 31296 sshjval 31312 sshjval3 31316 pjhfval 31358 pjmfn 31677 pjmf1 31678 hosmval 31697 hommval 31698 hodmval 31699 hfsmval 31700 hfmmval 31701 nmopval 31818 elcnop 31819 ellnop 31820 elunop 31834 elhmop 31835 hmopex 31837 nmfnval 31838 nlfnval 31843 elcnfn 31844 ellnfn 31845 dmadjss 31849 dmadjop 31850 adjeu 31851 adjval 31852 eigvecval 31858 eigvalfval 31859 specval 31860 hhcno 31866 hhcnf 31867 adjeq 31897 brafval 31905 kbfval 31914 adjbdln 32045 rnbra 32069 bra11 32070 leoprf2 32089 ishst 32176 |
| Copyright terms: Public domain | W3C validator |