Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 29182 | . 2 class ℋ | |
2 | cvv 3422 | . 2 class V | |
3 | 1, 2 | wcel 2108 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 29274 hilablo 29423 hhph 29441 hcau 29447 hlimadd 29456 hhcms 29466 issh 29471 shex 29475 hlim0 29498 hhssva 29520 hhsssm 29521 hhssnm 29522 hhshsslem1 29530 hhsscms 29541 ocval 29543 spanval 29596 hsupval 29597 sshjval 29613 sshjval3 29617 pjhfval 29659 pjmfn 29978 pjmf1 29979 hosmval 29998 hommval 29999 hodmval 30000 hfsmval 30001 hfmmval 30002 nmopval 30119 elcnop 30120 ellnop 30121 elunop 30135 elhmop 30136 hmopex 30138 nmfnval 30139 nlfnval 30144 elcnfn 30145 ellnfn 30146 dmadjss 30150 dmadjop 30151 adjeu 30152 adjval 30153 eigvecval 30159 eigvalfval 30160 specval 30161 hhcno 30167 hhcnf 30168 adjeq 30198 brafval 30206 kbfval 30215 adjbdln 30346 rnbra 30370 bra11 30371 leoprf2 30390 ishst 30477 |
Copyright terms: Public domain | W3C validator |