Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 29289 | . 2 class ℋ | |
2 | cvv 3429 | . 2 class V | |
3 | 1, 2 | wcel 2106 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 29381 hilablo 29530 hhph 29548 hcau 29554 hlimadd 29563 hhcms 29573 issh 29578 shex 29582 hlim0 29605 hhssva 29627 hhsssm 29628 hhssnm 29629 hhshsslem1 29637 hhsscms 29648 ocval 29650 spanval 29703 hsupval 29704 sshjval 29720 sshjval3 29724 pjhfval 29766 pjmfn 30085 pjmf1 30086 hosmval 30105 hommval 30106 hodmval 30107 hfsmval 30108 hfmmval 30109 nmopval 30226 elcnop 30227 ellnop 30228 elunop 30242 elhmop 30243 hmopex 30245 nmfnval 30246 nlfnval 30251 elcnfn 30252 ellnfn 30253 dmadjss 30257 dmadjop 30258 adjeu 30259 adjval 30260 eigvecval 30266 eigvalfval 30267 specval 30268 hhcno 30274 hhcnf 30275 adjeq 30305 brafval 30313 kbfval 30322 adjbdln 30453 rnbra 30477 bra11 30478 leoprf2 30497 ishst 30584 |
Copyright terms: Public domain | W3C validator |