Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version |
Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-hilex | ⊢ ℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chba 29290 | . 2 class ℋ | |
2 | cvv 3433 | . 2 class V | |
3 | 1, 2 | wcel 2107 | 1 wff ℋ ∈ V |
Colors of variables: wff setvar class |
This axiom is referenced by: hvmulex 29382 hilablo 29531 hhph 29549 hcau 29555 hlimadd 29564 hhcms 29574 issh 29579 shex 29583 hlim0 29606 hhssva 29628 hhsssm 29629 hhssnm 29630 hhshsslem1 29638 hhsscms 29649 ocval 29651 spanval 29704 hsupval 29705 sshjval 29721 sshjval3 29725 pjhfval 29767 pjmfn 30086 pjmf1 30087 hosmval 30106 hommval 30107 hodmval 30108 hfsmval 30109 hfmmval 30110 nmopval 30227 elcnop 30228 ellnop 30229 elunop 30243 elhmop 30244 hmopex 30246 nmfnval 30247 nlfnval 30252 elcnfn 30253 ellnfn 30254 dmadjss 30258 dmadjop 30259 adjeu 30260 adjval 30261 eigvecval 30267 eigvalfval 30268 specval 30269 hhcno 30275 hhcnf 30276 adjeq 30306 brafval 30314 kbfval 30323 adjbdln 30454 rnbra 30478 bra11 30479 leoprf2 30498 ishst 30585 |
Copyright terms: Public domain | W3C validator |