| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ax-hilex | Structured version Visualization version GIF version | ||
| Description: This is our first axiom for a complex Hilbert space, which is the foundation for quantum mechanics and quantum field theory. We assume that there exists a primitive class, ℋ, which contains objects called vectors. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-hilex | ⊢ ℋ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chba 30901 | . 2 class ℋ | |
| 2 | cvv 3437 | . 2 class V | |
| 3 | 1, 2 | wcel 2113 | 1 wff ℋ ∈ V |
| Colors of variables: wff setvar class |
| This axiom is referenced by: hvmulex 30993 hilablo 31142 hhph 31160 hcau 31166 hlimadd 31175 hhcms 31185 issh 31190 shex 31194 hlim0 31217 hhssva 31239 hhsssm 31240 hhssnm 31241 hhshsslem1 31249 hhsscms 31260 ocval 31262 spanval 31315 hsupval 31316 sshjval 31332 sshjval3 31336 pjhfval 31378 pjmfn 31697 pjmf1 31698 hosmval 31717 hommval 31718 hodmval 31719 hfsmval 31720 hfmmval 31721 nmopval 31838 elcnop 31839 ellnop 31840 elunop 31854 elhmop 31855 hmopex 31857 nmfnval 31858 nlfnval 31863 elcnfn 31864 ellnfn 31865 dmadjss 31869 dmadjop 31870 adjeu 31871 adjval 31872 eigvecval 31878 eigvalfval 31879 specval 31880 hhcno 31886 hhcnf 31887 adjeq 31917 brafval 31925 kbfval 31934 adjbdln 32065 rnbra 32089 bra11 32090 leoprf2 32109 ishst 32196 |
| Copyright terms: Public domain | W3C validator |