| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlex | Structured version Visualization version GIF version | ||
| Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlex.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| Ref | Expression |
|---|---|
| hlex | ⊢ 𝑋 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlex.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | 1 | fvexi 6845 | 1 ⊢ 𝑋 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3438 ‘cfv 6489 BaseSetcba 30577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-sn 4578 df-pr 4580 df-uni 4861 df-iota 6445 df-fv 6497 |
| This theorem is referenced by: h2hcau 30970 h2hlm 30971 axhilex-zf 30972 |
| Copyright terms: Public domain | W3C validator |