| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlex | Structured version Visualization version GIF version | ||
| Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlex.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| Ref | Expression |
|---|---|
| hlex | ⊢ 𝑋 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlex.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | 1 | fvexi 6872 | 1 ⊢ 𝑋 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 BaseSetcba 30515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: h2hcau 30908 h2hlm 30909 axhilex-zf 30910 |
| Copyright terms: Public domain | W3C validator |