Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlex | Structured version Visualization version GIF version |
Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlex.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
hlex | ⊢ 𝑋 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlex.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | 1 | fvexi 6770 | 1 ⊢ 𝑋 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 BaseSetcba 28849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-fv 6426 |
This theorem is referenced by: h2hcau 29242 h2hlm 29243 axhilex-zf 29244 |
Copyright terms: Public domain | W3C validator |