MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlex Structured version   Visualization version   GIF version

Theorem hlex 30930
Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlex.1 𝑋 = (BaseSet‘𝑈)
Assertion
Ref Expression
hlex 𝑋 ∈ V

Proof of Theorem hlex
StepHypRef Expression
1 hlex.1 . 2 𝑋 = (BaseSet‘𝑈)
21fvexi 6934 1 𝑋 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  cfv 6573  BaseSetcba 30618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525  df-fv 6581
This theorem is referenced by:  h2hcau  31011  h2hlm  31012  axhilex-zf  31013
  Copyright terms: Public domain W3C validator