![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlex | Structured version Visualization version GIF version |
Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlex.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
hlex | ⊢ 𝑋 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlex.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | 1 | fvexi 6934 | 1 ⊢ 𝑋 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 BaseSetcba 30618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-fv 6581 |
This theorem is referenced by: h2hcau 31011 h2hlm 31012 axhilex-zf 31013 |
Copyright terms: Public domain | W3C validator |