MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlex Structured version   Visualization version   GIF version

Theorem hlex 30623
Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlex.1 𝑋 = (BaseSetβ€˜π‘ˆ)
Assertion
Ref Expression
hlex 𝑋 ∈ V

Proof of Theorem hlex
StepHypRef Expression
1 hlex.1 . 2 𝑋 = (BaseSetβ€˜π‘ˆ)
21fvexi 6896 1 𝑋 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  Vcvv 3466  β€˜cfv 6534  BaseSetcba 30311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-nul 5297
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-sn 4622  df-pr 4624  df-uni 4901  df-iota 6486  df-fv 6542
This theorem is referenced by:  h2hcau  30704  h2hlm  30705  axhilex-zf  30706
  Copyright terms: Public domain W3C validator