Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > axhfvadd-zf | Structured version Visualization version GIF version |
Description: Derive Axiom ax-hfvadd 28883 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axhil.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
axhil.2 | ⊢ 𝑈 ∈ CHilOLD |
Ref | Expression |
---|---|
axhfvadd-zf | ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.2 | . 2 ⊢ 𝑈 ∈ CHilOLD | |
2 | df-hba 28852 | . . . 4 ⊢ ℋ = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
3 | axhil.1 | . . . . 5 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | 3 | fveq2i 6662 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
5 | 2, 4 | eqtr4i 2785 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) |
6 | 1 | hlnvi 28775 | . . . 4 ⊢ 𝑈 ∈ NrmCVec |
7 | 3, 6 | h2hva 28857 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
8 | 5, 7 | hladdf 28782 | . 2 ⊢ (𝑈 ∈ CHilOLD → +ℎ :( ℋ × ℋ)⟶ ℋ) |
9 | 1, 8 | ax-mp 5 | 1 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 〈cop 4529 × cxp 5523 ⟶wf 6332 ‘cfv 6336 BaseSetcba 28469 CHilOLDchlo 28768 ℋchba 28802 +ℎ cva 28803 ·ℎ csm 28804 normℎcno 28806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-1st 7694 df-2nd 7695 df-grpo 28376 df-ablo 28428 df-vc 28442 df-nv 28475 df-va 28478 df-ba 28479 df-sm 28480 df-0v 28481 df-nmcv 28483 df-cbn 28746 df-hlo 28769 df-hba 28852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |