HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhfvadd-zf Structured version   Visualization version   GIF version

Theorem axhfvadd-zf 30222
Description: Derive Axiom ax-hfvadd 30240 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhfvadd-zf + :( ℋ × ℋ)⟶ ℋ

Proof of Theorem axhfvadd-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 30209 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6891 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2763 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 30132 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hva 30214 . . 3 + = ( +𝑣𝑈)
85, 7hladdf 30139 . 2 (𝑈 ∈ CHilOLD → + :( ℋ × ℋ)⟶ ℋ)
91, 8ax-mp 5 1 + :( ℋ × ℋ)⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  cop 4633   × cxp 5673  wf 6536  cfv 6540  BaseSetcba 29826  CHilOLDchlo 30125  chba 30159   + cva 30160   · csm 30161  normcno 30163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-1st 7971  df-2nd 7972  df-grpo 29733  df-ablo 29785  df-vc 29799  df-nv 29832  df-va 29835  df-ba 29836  df-sm 29837  df-0v 29838  df-nmcv 29840  df-cbn 30103  df-hlo 30126  df-hba 30209
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator