HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhfvadd-zf Structured version   Visualization version   GIF version

Theorem axhfvadd-zf 30911
Description: Derive Axiom ax-hfvadd 30929 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhfvadd-zf + :( ℋ × ℋ)⟶ ℋ

Proof of Theorem axhfvadd-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 30898 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6861 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2755 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 30821 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hva 30903 . . 3 + = ( +𝑣𝑈)
85, 7hladdf 30828 . 2 (𝑈 ∈ CHilOLD → + :( ℋ × ℋ)⟶ ℋ)
91, 8ax-mp 5 1 + :( ℋ × ℋ)⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cop 4595   × cxp 5636  wf 6507  cfv 6511  BaseSetcba 30515  CHilOLDchlo 30814  chba 30848   + cva 30849   · csm 30850  normcno 30852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-1st 7968  df-2nd 7969  df-grpo 30422  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529  df-cbn 30792  df-hlo 30815  df-hba 30898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator