| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axunprim | Structured version Visualization version GIF version | ||
| Description: ax-un 7663 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| axunprim | ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axunnd 10479 | . 2 ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
| 2 | df-an 396 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
| 3 | 2 | exbii 1849 | . . . . . . 7 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
| 4 | exnal 1828 | . . . . . . 7 ⊢ (∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
| 5 | 3, 4 | bitri 275 | . . . . . 6 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
| 6 | 5 | imbi1i 349 | . . . . 5 ⊢ ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 7 | 6 | albii 1820 | . . . 4 ⊢ (∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 8 | 7 | exbii 1849 | . . 3 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 9 | df-ex 1781 | . . 3 ⊢ (∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | |
| 10 | 8, 9 | bitri 275 | . 2 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 11 | 1, 10 | mpbi 230 | 1 ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-13 2371 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 ax-reg 9473 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |