Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axunprim Structured version   Visualization version   GIF version

Theorem axunprim 32177
Description: ax-un 7226 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axunprim ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)

Proof of Theorem axunprim
StepHypRef Expression
1 axunnd 9753 . 2 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
2 df-an 387 . . . . . . . 8 ((𝑦𝑥𝑥𝑧) ↔ ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
32exbii 1892 . . . . . . 7 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
4 exnal 1870 . . . . . . 7 (∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
53, 4bitri 267 . . . . . 6 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
65imbi1i 341 . . . . 5 ((∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ (¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
76albii 1863 . . . 4 (∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
87exbii 1892 . . 3 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
9 df-ex 1824 . . 3 (∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
108, 9bitri 267 . 2 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
111, 10mpbi 222 1 ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wal 1599  wex 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226  ax-reg 8786
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-eprel 5266  df-fr 5314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator