Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axunprim Structured version   Visualization version   GIF version

Theorem axunprim 33884
Description: ax-un 7642 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axunprim ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)

Proof of Theorem axunprim
StepHypRef Expression
1 axunnd 10445 . 2 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
2 df-an 397 . . . . . . . 8 ((𝑦𝑥𝑥𝑧) ↔ ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
32exbii 1849 . . . . . . 7 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
4 exnal 1828 . . . . . . 7 (∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
53, 4bitri 274 . . . . . 6 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
65imbi1i 349 . . . . 5 ((∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ (¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
76albii 1820 . . . 4 (∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
87exbii 1849 . . 3 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
9 df-ex 1781 . . 3 (∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
108, 9bitri 274 . 2 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
111, 10mpbi 229 1 ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642  ax-reg 9441
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090  df-opab 5152  df-eprel 5518  df-fr 5569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator