Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axunprim Structured version   Visualization version   GIF version

Theorem axunprim 35683
Description: ax-un 7754 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axunprim ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)

Proof of Theorem axunprim
StepHypRef Expression
1 axunnd 10634 . 2 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
2 df-an 396 . . . . . . . 8 ((𝑦𝑥𝑥𝑧) ↔ ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
32exbii 1845 . . . . . . 7 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧))
4 exnal 1824 . . . . . . 7 (∃𝑥 ¬ (𝑦𝑥 → ¬ 𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
53, 4bitri 275 . . . . . 6 (∃𝑥(𝑦𝑥𝑥𝑧) ↔ ¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧))
65imbi1i 349 . . . . 5 ((∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ (¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
76albii 1816 . . . 4 (∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
87exbii 1845 . . 3 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
9 df-ex 1777 . . 3 (∃𝑥𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
108, 9bitri 275 . 2 (∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥))
111, 10mpbi 230 1 ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦𝑥 → ¬ 𝑥𝑧) → 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-reg 9630
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-fr 5641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator