![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > axunprim | Structured version Visualization version GIF version |
Description: ax-un 7728 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
Ref | Expression |
---|---|
axunprim | ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axunnd 10594 | . 2 ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
2 | df-an 396 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
3 | 2 | exbii 1849 | . . . . . . 7 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
4 | exnal 1828 | . . . . . . 7 ⊢ (∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
5 | 3, 4 | bitri 275 | . . . . . 6 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
6 | 5 | imbi1i 349 | . . . . 5 ⊢ ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
7 | 6 | albii 1820 | . . . 4 ⊢ (∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
8 | 7 | exbii 1849 | . . 3 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
9 | df-ex 1781 | . . 3 ⊢ (∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | |
10 | 8, 9 | bitri 275 | . 2 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
11 | 1, 10 | mpbi 229 | 1 ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-13 2370 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 ax-reg 9590 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-eprel 5580 df-fr 5631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |