Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axunprim | Structured version Visualization version GIF version |
Description: ax-un 7588 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
Ref | Expression |
---|---|
axunprim | ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axunnd 10352 | . 2 ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
2 | df-an 397 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
3 | 2 | exbii 1850 | . . . . . . 7 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
4 | exnal 1829 | . . . . . . 7 ⊢ (∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
5 | 3, 4 | bitri 274 | . . . . . 6 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
6 | 5 | imbi1i 350 | . . . . 5 ⊢ ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
7 | 6 | albii 1822 | . . . 4 ⊢ (∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
8 | 7 | exbii 1850 | . . 3 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
9 | df-ex 1783 | . . 3 ⊢ (∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | |
10 | 8, 9 | bitri 274 | . 2 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
11 | 1, 10 | mpbi 229 | 1 ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-fr 5544 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |