| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axunprim | Structured version Visualization version GIF version | ||
| Description: ax-un 7756 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| axunprim | ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axunnd 10637 | . 2 ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
| 2 | df-an 396 | . . . . . . . 8 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
| 3 | 2 | exbii 1847 | . . . . . . 7 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
| 4 | exnal 1826 | . . . . . . 7 ⊢ (∃𝑥 ¬ (𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) | |
| 5 | 3, 4 | bitri 275 | . . . . . 6 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) ↔ ¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧)) |
| 6 | 5 | imbi1i 349 | . . . . 5 ⊢ ((∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 7 | 6 | albii 1818 | . . . 4 ⊢ (∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 8 | 7 | exbii 1847 | . . 3 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 9 | df-ex 1779 | . . 3 ⊢ (∃𝑥∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | |
| 10 | 8, 9 | bitri 275 | . 2 ⊢ (∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
| 11 | 1, 10 | mpbi 230 | 1 ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 ax-reg 9633 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-eprel 5583 df-fr 5636 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |