| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotleme | Structured version Visualization version GIF version | ||
| Description: Elements of 𝐸. (Contributed by Thierry Arnoux, 14-Dec-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| Ref | Expression |
|---|---|
| ballotleme | ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6860 | . . . . 5 ⊢ (𝑑 = 𝐶 → (𝐹‘𝑑) = (𝐹‘𝐶)) | |
| 2 | 1 | fveq1d 6862 | . . . 4 ⊢ (𝑑 = 𝐶 → ((𝐹‘𝑑)‘𝑖) = ((𝐹‘𝐶)‘𝑖)) |
| 3 | 2 | breq2d 5121 | . . 3 ⊢ (𝑑 = 𝐶 → (0 < ((𝐹‘𝑑)‘𝑖) ↔ 0 < ((𝐹‘𝐶)‘𝑖))) |
| 4 | 3 | ralbidv 3157 | . 2 ⊢ (𝑑 = 𝐶 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
| 5 | ballotth.e | . . 3 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 6 | fveq2 6860 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) | |
| 7 | 6 | fveq1d 6862 | . . . . . 6 ⊢ (𝑐 = 𝑑 → ((𝐹‘𝑐)‘𝑖) = ((𝐹‘𝑑)‘𝑖)) |
| 8 | 7 | breq2d 5121 | . . . . 5 ⊢ (𝑐 = 𝑑 → (0 < ((𝐹‘𝑐)‘𝑖) ↔ 0 < ((𝐹‘𝑑)‘𝑖))) |
| 9 | 8 | ralbidv 3157 | . . . 4 ⊢ (𝑐 = 𝑑 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖))) |
| 10 | 9 | cbvrabv 3419 | . . 3 ⊢ {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
| 11 | 5, 10 | eqtri 2753 | . 2 ⊢ 𝐸 = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
| 12 | 4, 11 | elrab2 3664 | 1 ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∖ cdif 3913 ∩ cin 3915 𝒫 cpw 4565 class class class wbr 5109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 + caddc 11077 < clt 11214 − cmin 11411 / cdiv 11841 ℕcn 12187 ℤcz 12535 ...cfz 13474 ♯chash 14301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: ballotlemodife 34495 ballotlem4 34496 |
| Copyright terms: Public domain | W3C validator |