Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotleme | Structured version Visualization version GIF version |
Description: Elements of 𝐸. (Contributed by Thierry Arnoux, 14-Dec-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
Ref | Expression |
---|---|
ballotleme | ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . 5 ⊢ (𝑑 = 𝐶 → (𝐹‘𝑑) = (𝐹‘𝐶)) | |
2 | 1 | fveq1d 6776 | . . . 4 ⊢ (𝑑 = 𝐶 → ((𝐹‘𝑑)‘𝑖) = ((𝐹‘𝐶)‘𝑖)) |
3 | 2 | breq2d 5086 | . . 3 ⊢ (𝑑 = 𝐶 → (0 < ((𝐹‘𝑑)‘𝑖) ↔ 0 < ((𝐹‘𝐶)‘𝑖))) |
4 | 3 | ralbidv 3112 | . 2 ⊢ (𝑑 = 𝐶 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
5 | ballotth.e | . . 3 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
6 | fveq2 6774 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) | |
7 | 6 | fveq1d 6776 | . . . . . 6 ⊢ (𝑐 = 𝑑 → ((𝐹‘𝑐)‘𝑖) = ((𝐹‘𝑑)‘𝑖)) |
8 | 7 | breq2d 5086 | . . . . 5 ⊢ (𝑐 = 𝑑 → (0 < ((𝐹‘𝑐)‘𝑖) ↔ 0 < ((𝐹‘𝑑)‘𝑖))) |
9 | 8 | ralbidv 3112 | . . . 4 ⊢ (𝑐 = 𝑑 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖))) |
10 | 9 | cbvrabv 3426 | . . 3 ⊢ {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
11 | 5, 10 | eqtri 2766 | . 2 ⊢ 𝐸 = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
12 | 4, 11 | elrab2 3627 | 1 ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 − cmin 11205 / cdiv 11632 ℕcn 11973 ℤcz 12319 ...cfz 13239 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: ballotlemodife 32464 ballotlem4 32465 |
Copyright terms: Public domain | W3C validator |