Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotleme Structured version   Visualization version   GIF version

Theorem ballotleme 34502
Description: Elements of 𝐸. (Contributed by Thierry Arnoux, 14-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotleme (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotleme
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6817 . . . . 5 (𝑑 = 𝐶 → (𝐹𝑑) = (𝐹𝐶))
21fveq1d 6819 . . . 4 (𝑑 = 𝐶 → ((𝐹𝑑)‘𝑖) = ((𝐹𝐶)‘𝑖))
32breq2d 5098 . . 3 (𝑑 = 𝐶 → (0 < ((𝐹𝑑)‘𝑖) ↔ 0 < ((𝐹𝐶)‘𝑖)))
43ralbidv 3155 . 2 (𝑑 = 𝐶 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
5 ballotth.e . . 3 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
6 fveq2 6817 . . . . . . 7 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
76fveq1d 6819 . . . . . 6 (𝑐 = 𝑑 → ((𝐹𝑐)‘𝑖) = ((𝐹𝑑)‘𝑖))
87breq2d 5098 . . . . 5 (𝑐 = 𝑑 → (0 < ((𝐹𝑐)‘𝑖) ↔ 0 < ((𝐹𝑑)‘𝑖)))
98ralbidv 3155 . . . 4 (𝑐 = 𝑑 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖)))
109cbvrabv 3405 . . 3 {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)} = {𝑑𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖)}
115, 10eqtri 2754 . 2 𝐸 = {𝑑𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖)}
124, 11elrab2 3645 1 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cdif 3894  cin 3896  𝒫 cpw 4545   class class class wbr 5086  cmpt 5167  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   + caddc 11004   < clt 11141  cmin 11339   / cdiv 11769  cn 12120  cz 12463  ...cfz 13402  chash 14232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484
This theorem is referenced by:  ballotlemodife  34503  ballotlem4  34504
  Copyright terms: Public domain W3C validator