Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotleme Structured version   Visualization version   GIF version

Theorem ballotleme 32463
Description: Elements of 𝐸. (Contributed by Thierry Arnoux, 14-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotleme (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotleme
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . 5 (𝑑 = 𝐶 → (𝐹𝑑) = (𝐹𝐶))
21fveq1d 6776 . . . 4 (𝑑 = 𝐶 → ((𝐹𝑑)‘𝑖) = ((𝐹𝐶)‘𝑖))
32breq2d 5086 . . 3 (𝑑 = 𝐶 → (0 < ((𝐹𝑑)‘𝑖) ↔ 0 < ((𝐹𝐶)‘𝑖)))
43ralbidv 3112 . 2 (𝑑 = 𝐶 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
5 ballotth.e . . 3 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
6 fveq2 6774 . . . . . . 7 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
76fveq1d 6776 . . . . . 6 (𝑐 = 𝑑 → ((𝐹𝑐)‘𝑖) = ((𝐹𝑑)‘𝑖))
87breq2d 5086 . . . . 5 (𝑐 = 𝑑 → (0 < ((𝐹𝑐)‘𝑖) ↔ 0 < ((𝐹𝑑)‘𝑖)))
98ralbidv 3112 . . . 4 (𝑐 = 𝑑 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖)))
109cbvrabv 3426 . . 3 {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)} = {𝑑𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖)}
115, 10eqtri 2766 . 2 𝐸 = {𝑑𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑑)‘𝑖)}
124, 11elrab2 3627 1 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  cin 3886  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205   / cdiv 11632  cn 11973  cz 12319  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by:  ballotlemodife  32464  ballotlem4  32465
  Copyright terms: Public domain W3C validator