| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotleme | Structured version Visualization version GIF version | ||
| Description: Elements of 𝐸. (Contributed by Thierry Arnoux, 14-Dec-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| Ref | Expression |
|---|---|
| ballotleme | ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6886 | . . . . 5 ⊢ (𝑑 = 𝐶 → (𝐹‘𝑑) = (𝐹‘𝐶)) | |
| 2 | 1 | fveq1d 6888 | . . . 4 ⊢ (𝑑 = 𝐶 → ((𝐹‘𝑑)‘𝑖) = ((𝐹‘𝐶)‘𝑖)) |
| 3 | 2 | breq2d 5135 | . . 3 ⊢ (𝑑 = 𝐶 → (0 < ((𝐹‘𝑑)‘𝑖) ↔ 0 < ((𝐹‘𝐶)‘𝑖))) |
| 4 | 3 | ralbidv 3165 | . 2 ⊢ (𝑑 = 𝐶 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
| 5 | ballotth.e | . . 3 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 6 | fveq2 6886 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) | |
| 7 | 6 | fveq1d 6888 | . . . . . 6 ⊢ (𝑐 = 𝑑 → ((𝐹‘𝑐)‘𝑖) = ((𝐹‘𝑑)‘𝑖)) |
| 8 | 7 | breq2d 5135 | . . . . 5 ⊢ (𝑐 = 𝑑 → (0 < ((𝐹‘𝑐)‘𝑖) ↔ 0 < ((𝐹‘𝑑)‘𝑖))) |
| 9 | 8 | ralbidv 3165 | . . . 4 ⊢ (𝑐 = 𝑑 → (∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖) ↔ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖))) |
| 10 | 9 | cbvrabv 3430 | . . 3 ⊢ {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
| 11 | 5, 10 | eqtri 2757 | . 2 ⊢ 𝐸 = {𝑑 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑑)‘𝑖)} |
| 12 | 4, 11 | elrab2 3678 | 1 ⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ∖ cdif 3928 ∩ cin 3930 𝒫 cpw 4580 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 < clt 11277 − cmin 11474 / cdiv 11902 ℕcn 12248 ℤcz 12596 ...cfz 13529 ♯chash 14352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 |
| This theorem is referenced by: ballotlemodife 34475 ballotlem4 34476 |
| Copyright terms: Public domain | W3C validator |