Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem4 Structured version   Visualization version   GIF version

Theorem ballotlem4 31878
 Description: If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlem4 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem4
StepHypRef Expression
1 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
3 nnaddcl 11650 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
41, 2, 3mp2an 691 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
5 elnnuz 12272 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℕ ↔ (𝑀 + 𝑁) ∈ (ℤ‘1))
64, 5mpbi 233 . . . . . 6 (𝑀 + 𝑁) ∈ (ℤ‘1)
7 eluzfz1 12911 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘1) → 1 ∈ (1...(𝑀 + 𝑁)))
86, 7ax-mp 5 . . . . 5 1 ∈ (1...(𝑀 + 𝑁))
9 0le1 11154 . . . . . . . . . 10 0 ≤ 1
10 0re 10634 . . . . . . . . . . 11 0 ∈ ℝ
11 1re 10632 . . . . . . . . . . 11 1 ∈ ℝ
1210, 11lenlti 10751 . . . . . . . . . 10 (0 ≤ 1 ↔ ¬ 1 < 0)
139, 12mpbi 233 . . . . . . . . 9 ¬ 1 < 0
14 ltsub13 11112 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (0 − 1) ↔ 1 < (0 − 0)))
1510, 10, 11, 14mp3an 1458 . . . . . . . . . 10 (0 < (0 − 1) ↔ 1 < (0 − 0))
16 0m0e0 11747 . . . . . . . . . . 11 (0 − 0) = 0
1716breq2i 5038 . . . . . . . . . 10 (1 < (0 − 0) ↔ 1 < 0)
1815, 17bitri 278 . . . . . . . . 9 (0 < (0 − 1) ↔ 1 < 0)
1913, 18mtbir 326 . . . . . . . 8 ¬ 0 < (0 − 1)
20 1m1e0 11699 . . . . . . . . . . . 12 (1 − 1) = 0
2120fveq2i 6648 . . . . . . . . . . 11 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
22 ballotth.o . . . . . . . . . . . 12 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
23 ballotth.p . . . . . . . . . . . 12 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
24 ballotth.f . . . . . . . . . . . 12 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
251, 2, 22, 23, 24ballotlemfval0 31875 . . . . . . . . . . 11 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2621, 25syl5eq 2845 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘(1 − 1)) = 0)
2726oveq1d 7150 . . . . . . . . 9 (𝐶𝑂 → (((𝐹𝐶)‘(1 − 1)) − 1) = (0 − 1))
2827breq2d 5042 . . . . . . . 8 (𝐶𝑂 → (0 < (((𝐹𝐶)‘(1 − 1)) − 1) ↔ 0 < (0 − 1)))
2919, 28mtbiri 330 . . . . . . 7 (𝐶𝑂 → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
3029adantr 484 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
31 simpl 486 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 𝐶𝑂)
32 1nn 11638 . . . . . . . . . . . 12 1 ∈ ℕ
3332a1i 11 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 1 ∈ ℕ)
341, 2, 22, 23, 24, 31, 33ballotlemfp1 31871 . . . . . . . . . 10 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3534simpld 498 . . . . . . . . 9 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
368, 35mpan2 690 . . . . . . . 8 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3736imp 410 . . . . . . 7 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
3837breq2d 5042 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → (0 < ((𝐹𝐶)‘1) ↔ 0 < (((𝐹𝐶)‘(1 − 1)) − 1)))
3930, 38mtbird 328 . . . . 5 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < ((𝐹𝐶)‘1))
40 fveq2 6645 . . . . . . . 8 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4140breq2d 5042 . . . . . . 7 (𝑖 = 1 → (0 < ((𝐹𝐶)‘𝑖) ↔ 0 < ((𝐹𝐶)‘1)))
4241notbid 321 . . . . . 6 (𝑖 = 1 → (¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ 0 < ((𝐹𝐶)‘1)))
4342rspcev 3571 . . . . 5 ((1 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 0 < ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
448, 39, 43sylancr 590 . . . 4 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
45 rexnal 3201 . . . 4 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4644, 45sylib 221 . . 3 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
47 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
481, 2, 22, 23, 24, 47ballotleme 31876 . . . 4 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4948simprbi 500 . . 3 (𝐶𝐸 → ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
5046, 49nsyl 142 . 2 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 𝐶𝐸)
5150ex 416 1 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {crab 3110   ∖ cdif 3878   ∩ cin 3880  𝒫 cpw 4497   class class class wbr 5030   ↦ cmpt 5110  ‘cfv 6324  (class class class)co 7135  ℝcr 10527  0cc0 10528  1c1 10529   + caddc 10531   < clt 10666   ≤ cle 10667   − cmin 10861   / cdiv 11288  ℕcn 11627  ℤcz 11971  ℤ≥cuz 12233  ...cfz 12887  ♯chash 13688 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-dju 9316  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-n0 11888  df-z 11972  df-uz 12234  df-fz 12888  df-hash 13689 This theorem is referenced by:  ballotth  31917
 Copyright terms: Public domain W3C validator