Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem4 Structured version   Visualization version   GIF version

Theorem ballotlem4 34512
Description: If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlem4 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem4
StepHypRef Expression
1 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
3 nnaddcl 12148 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
41, 2, 3mp2an 692 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
5 elnnuz 12776 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℕ ↔ (𝑀 + 𝑁) ∈ (ℤ‘1))
64, 5mpbi 230 . . . . . 6 (𝑀 + 𝑁) ∈ (ℤ‘1)
7 eluzfz1 13431 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘1) → 1 ∈ (1...(𝑀 + 𝑁)))
86, 7ax-mp 5 . . . . 5 1 ∈ (1...(𝑀 + 𝑁))
9 0le1 11640 . . . . . . . . . 10 0 ≤ 1
10 0re 11114 . . . . . . . . . . 11 0 ∈ ℝ
11 1re 11112 . . . . . . . . . . 11 1 ∈ ℝ
1210, 11lenlti 11233 . . . . . . . . . 10 (0 ≤ 1 ↔ ¬ 1 < 0)
139, 12mpbi 230 . . . . . . . . 9 ¬ 1 < 0
14 ltsub13 11598 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (0 − 1) ↔ 1 < (0 − 0)))
1510, 10, 11, 14mp3an 1463 . . . . . . . . . 10 (0 < (0 − 1) ↔ 1 < (0 − 0))
16 0m0e0 12240 . . . . . . . . . . 11 (0 − 0) = 0
1716breq2i 5097 . . . . . . . . . 10 (1 < (0 − 0) ↔ 1 < 0)
1815, 17bitri 275 . . . . . . . . 9 (0 < (0 − 1) ↔ 1 < 0)
1913, 18mtbir 323 . . . . . . . 8 ¬ 0 < (0 − 1)
20 1m1e0 12197 . . . . . . . . . . . 12 (1 − 1) = 0
2120fveq2i 6825 . . . . . . . . . . 11 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
22 ballotth.o . . . . . . . . . . . 12 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
23 ballotth.p . . . . . . . . . . . 12 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
24 ballotth.f . . . . . . . . . . . 12 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
251, 2, 22, 23, 24ballotlemfval0 34509 . . . . . . . . . . 11 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2621, 25eqtrid 2778 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘(1 − 1)) = 0)
2726oveq1d 7361 . . . . . . . . 9 (𝐶𝑂 → (((𝐹𝐶)‘(1 − 1)) − 1) = (0 − 1))
2827breq2d 5101 . . . . . . . 8 (𝐶𝑂 → (0 < (((𝐹𝐶)‘(1 − 1)) − 1) ↔ 0 < (0 − 1)))
2919, 28mtbiri 327 . . . . . . 7 (𝐶𝑂 → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
3029adantr 480 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
31 simpl 482 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 𝐶𝑂)
32 1nn 12136 . . . . . . . . . . . 12 1 ∈ ℕ
3332a1i 11 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 1 ∈ ℕ)
341, 2, 22, 23, 24, 31, 33ballotlemfp1 34505 . . . . . . . . . 10 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3534simpld 494 . . . . . . . . 9 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
368, 35mpan2 691 . . . . . . . 8 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3736imp 406 . . . . . . 7 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
3837breq2d 5101 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → (0 < ((𝐹𝐶)‘1) ↔ 0 < (((𝐹𝐶)‘(1 − 1)) − 1)))
3930, 38mtbird 325 . . . . 5 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < ((𝐹𝐶)‘1))
40 fveq2 6822 . . . . . . . 8 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4140breq2d 5101 . . . . . . 7 (𝑖 = 1 → (0 < ((𝐹𝐶)‘𝑖) ↔ 0 < ((𝐹𝐶)‘1)))
4241notbid 318 . . . . . 6 (𝑖 = 1 → (¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ 0 < ((𝐹𝐶)‘1)))
4342rspcev 3572 . . . . 5 ((1 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 0 < ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
448, 39, 43sylancr 587 . . . 4 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
45 rexnal 3084 . . . 4 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4644, 45sylib 218 . . 3 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
47 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
481, 2, 22, 23, 24, 47ballotleme 34510 . . . 4 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4948simprbi 496 . . 3 (𝐶𝐸 → ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
5046, 49nsyl 140 . 2 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 𝐶𝐸)
5150ex 412 1 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  cdif 3894  cin 3896  𝒫 cpw 4547   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  cz 12468  cuz 12732  ...cfz 13407  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  ballotth  34551
  Copyright terms: Public domain W3C validator