Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem4 Structured version   Visualization version   GIF version

Theorem ballotlem4 32465
Description: If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlem4 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem4
StepHypRef Expression
1 ballotth.m . . . . . . . 8 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . 8 𝑁 ∈ ℕ
3 nnaddcl 11996 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
41, 2, 3mp2an 689 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
5 elnnuz 12622 . . . . . . 7 ((𝑀 + 𝑁) ∈ ℕ ↔ (𝑀 + 𝑁) ∈ (ℤ‘1))
64, 5mpbi 229 . . . . . 6 (𝑀 + 𝑁) ∈ (ℤ‘1)
7 eluzfz1 13263 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘1) → 1 ∈ (1...(𝑀 + 𝑁)))
86, 7ax-mp 5 . . . . 5 1 ∈ (1...(𝑀 + 𝑁))
9 0le1 11498 . . . . . . . . . 10 0 ≤ 1
10 0re 10977 . . . . . . . . . . 11 0 ∈ ℝ
11 1re 10975 . . . . . . . . . . 11 1 ∈ ℝ
1210, 11lenlti 11095 . . . . . . . . . 10 (0 ≤ 1 ↔ ¬ 1 < 0)
139, 12mpbi 229 . . . . . . . . 9 ¬ 1 < 0
14 ltsub13 11456 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → (0 < (0 − 1) ↔ 1 < (0 − 0)))
1510, 10, 11, 14mp3an 1460 . . . . . . . . . 10 (0 < (0 − 1) ↔ 1 < (0 − 0))
16 0m0e0 12093 . . . . . . . . . . 11 (0 − 0) = 0
1716breq2i 5082 . . . . . . . . . 10 (1 < (0 − 0) ↔ 1 < 0)
1815, 17bitri 274 . . . . . . . . 9 (0 < (0 − 1) ↔ 1 < 0)
1913, 18mtbir 323 . . . . . . . 8 ¬ 0 < (0 − 1)
20 1m1e0 12045 . . . . . . . . . . . 12 (1 − 1) = 0
2120fveq2i 6777 . . . . . . . . . . 11 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
22 ballotth.o . . . . . . . . . . . 12 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
23 ballotth.p . . . . . . . . . . . 12 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
24 ballotth.f . . . . . . . . . . . 12 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
251, 2, 22, 23, 24ballotlemfval0 32462 . . . . . . . . . . 11 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2621, 25eqtrid 2790 . . . . . . . . . 10 (𝐶𝑂 → ((𝐹𝐶)‘(1 − 1)) = 0)
2726oveq1d 7290 . . . . . . . . 9 (𝐶𝑂 → (((𝐹𝐶)‘(1 − 1)) − 1) = (0 − 1))
2827breq2d 5086 . . . . . . . 8 (𝐶𝑂 → (0 < (((𝐹𝐶)‘(1 − 1)) − 1) ↔ 0 < (0 − 1)))
2919, 28mtbiri 327 . . . . . . 7 (𝐶𝑂 → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
3029adantr 481 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < (((𝐹𝐶)‘(1 − 1)) − 1))
31 simpl 483 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 𝐶𝑂)
32 1nn 11984 . . . . . . . . . . . 12 1 ∈ ℕ
3332a1i 11 . . . . . . . . . . 11 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → 1 ∈ ℕ)
341, 2, 22, 23, 24, 31, 33ballotlemfp1 32458 . . . . . . . . . 10 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
3534simpld 495 . . . . . . . . 9 ((𝐶𝑂 ∧ 1 ∈ (1...(𝑀 + 𝑁))) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
368, 35mpan2 688 . . . . . . . 8 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
3736imp 407 . . . . . . 7 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
3837breq2d 5086 . . . . . 6 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → (0 < ((𝐹𝐶)‘1) ↔ 0 < (((𝐹𝐶)‘(1 − 1)) − 1)))
3930, 38mtbird 325 . . . . 5 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 0 < ((𝐹𝐶)‘1))
40 fveq2 6774 . . . . . . . 8 (𝑖 = 1 → ((𝐹𝐶)‘𝑖) = ((𝐹𝐶)‘1))
4140breq2d 5086 . . . . . . 7 (𝑖 = 1 → (0 < ((𝐹𝐶)‘𝑖) ↔ 0 < ((𝐹𝐶)‘1)))
4241notbid 318 . . . . . 6 (𝑖 = 1 → (¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ 0 < ((𝐹𝐶)‘1)))
4342rspcev 3561 . . . . 5 ((1 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 0 < ((𝐹𝐶)‘1)) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
448, 39, 43sylancr 587 . . . 4 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖))
45 rexnal 3169 . . . 4 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4644, 45sylib 217 . . 3 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
47 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
481, 2, 22, 23, 24, 47ballotleme 32463 . . . 4 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4948simprbi 497 . . 3 (𝐶𝐸 → ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
5046, 49nsyl 140 . 2 ((𝐶𝑂 ∧ ¬ 1 ∈ 𝐶) → ¬ 𝐶𝐸)
5150ex 413 1 (𝐶𝑂 → (¬ 1 ∈ 𝐶 → ¬ 𝐶𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cdif 3884  cin 3886  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  cz 12319  cuz 12582  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  ballotth  32504
  Copyright terms: Public domain W3C validator