Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemodife Structured version   Visualization version   GIF version

Theorem ballotlemodife 34462
Description: Elements of (𝑂𝐸). (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlemodife (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemodife
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eldif 3986 . 2 (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ¬ 𝐶𝐸))
2 df-or 847 . . . 4 (((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂) → (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
3 pm3.24 402 . . . . 5 ¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂)
43a1bi 362 . . . 4 ((𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)) ↔ (¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂) → (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
52, 4bitr4i 278 . . 3 (((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
6 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
7 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
8 ballotth.o . . . . . . 7 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
9 ballotth.p . . . . . . 7 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ballotth.f . . . . . . 7 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
11 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
126, 7, 8, 9, 10, 11ballotleme 34461 . . . . . 6 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1312notbii 320 . . . . 5 𝐶𝐸 ↔ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1413anbi2i 622 . . . 4 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ (𝐶𝑂 ∧ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
15 ianor 982 . . . . 5 (¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)) ↔ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1615anbi2i 622 . . . 4 ((𝐶𝑂 ∧ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (𝐶𝑂 ∧ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
17 andi 1008 . . . 4 ((𝐶𝑂 ∧ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ ((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
1814, 16, 173bitri 297 . . 3 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ ((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
19 fz1ssfz0 13680 . . . . . . . . . . 11 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
2019a1i 11 . . . . . . . . . 10 (𝐶𝑂 → (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)))
2120sseld 4007 . . . . . . . . 9 (𝐶𝑂 → (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ (0...(𝑀 + 𝑁))))
2221imdistani 568 . . . . . . . 8 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
23 simpl 482 . . . . . . . . . . . 12 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝐶𝑂)
24 elfzelz 13584 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ)
2524adantl 481 . . . . . . . . . . . 12 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑗 ∈ ℤ)
266, 7, 8, 9, 10, 23, 25ballotlemfelz 34455 . . . . . . . . . . 11 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑗) ∈ ℤ)
2726zred 12747 . . . . . . . . . 10 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑗) ∈ ℝ)
2827sbimi 2074 . . . . . . . . 9 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → [𝑖 / 𝑗]((𝐹𝐶)‘𝑗) ∈ ℝ)
29 sban 2080 . . . . . . . . . 10 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ ([𝑖 / 𝑗]𝐶𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁))))
30 sbv 2088 . . . . . . . . . . 11 ([𝑖 / 𝑗]𝐶𝑂𝐶𝑂)
31 clelsb1 2871 . . . . . . . . . . 11 ([𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑖 ∈ (0...(𝑀 + 𝑁)))
3230, 31anbi12i 627 . . . . . . . . . 10 (([𝑖 / 𝑗]𝐶𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
3329, 32bitri 275 . . . . . . . . 9 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
34 nfv 1913 . . . . . . . . . 10 𝑗((𝐹𝐶)‘𝑖) ∈ ℝ
35 fveq2 6920 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝐹𝐶)‘𝑗) = ((𝐹𝐶)‘𝑖))
3635eleq1d 2829 . . . . . . . . . 10 (𝑗 = 𝑖 → (((𝐹𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹𝐶)‘𝑖) ∈ ℝ))
3734, 36sbiev 2318 . . . . . . . . 9 ([𝑖 / 𝑗]((𝐹𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹𝐶)‘𝑖) ∈ ℝ)
3828, 33, 373imtr3i 291 . . . . . . . 8 ((𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑖) ∈ ℝ)
3922, 38syl 17 . . . . . . 7 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑖) ∈ ℝ)
40 0red 11293 . . . . . . 7 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → 0 ∈ ℝ)
4139, 40lenltd 11436 . . . . . 6 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ¬ 0 < ((𝐹𝐶)‘𝑖)))
4241rexbidva 3183 . . . . 5 (𝐶𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0 ↔ ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖)))
43 rexnal 3106 . . . . 5 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4442, 43bitrdi 287 . . . 4 (𝐶𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0 ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4544pm5.32i 574 . . 3 ((𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0) ↔ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
465, 18, 453bitr4i 303 . 2 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
471, 46bitri 275 1 (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  [wsb 2064  wcel 2108  wral 3067  wrex 3076  {crab 3443  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  ballotlem5  34464  ballotlemrc  34495
  Copyright terms: Public domain W3C validator