Step | Hyp | Ref
| Expression |
1 | | eldif 3897 |
. 2
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) ↔ (𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝐸)) |
2 | | df-or 845 |
. . . 4
⊢ (((𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝑂) ∨ (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) ↔ (¬ (𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝑂) → (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)))) |
3 | | pm3.24 403 |
. . . . 5
⊢ ¬
(𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝑂) |
4 | 3 | a1bi 363 |
. . . 4
⊢ ((𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)) ↔ (¬ (𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝑂) → (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)))) |
5 | 2, 4 | bitr4i 277 |
. . 3
⊢ (((𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝑂) ∨ (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) ↔ (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
6 | | ballotth.m |
. . . . . . 7
⊢ 𝑀 ∈ ℕ |
7 | | ballotth.n |
. . . . . . 7
⊢ 𝑁 ∈ ℕ |
8 | | ballotth.o |
. . . . . . 7
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
9 | | ballotth.p |
. . . . . . 7
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
10 | | ballotth.f |
. . . . . . 7
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
11 | | ballotth.e |
. . . . . . 7
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
12 | 6, 7, 8, 9, 10, 11 | ballotleme 32463 |
. . . . . 6
⊢ (𝐶 ∈ 𝐸 ↔ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
13 | 12 | notbii 320 |
. . . . 5
⊢ (¬
𝐶 ∈ 𝐸 ↔ ¬ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
14 | 13 | anbi2i 623 |
. . . 4
⊢ ((𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝐸) ↔ (𝐶 ∈ 𝑂 ∧ ¬ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)))) |
15 | | ianor 979 |
. . . . 5
⊢ (¬
(𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)) ↔ (¬ 𝐶 ∈ 𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
16 | 15 | anbi2i 623 |
. . . 4
⊢ ((𝐶 ∈ 𝑂 ∧ ¬ (𝐶 ∈ 𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) ↔ (𝐶 ∈ 𝑂 ∧ (¬ 𝐶 ∈ 𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)))) |
17 | | andi 1005 |
. . . 4
⊢ ((𝐶 ∈ 𝑂 ∧ (¬ 𝐶 ∈ 𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) ↔ ((𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝑂) ∨ (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)))) |
18 | 14, 16, 17 | 3bitri 297 |
. . 3
⊢ ((𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝐸) ↔ ((𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝑂) ∨ (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)))) |
19 | | fz1ssfz0 13352 |
. . . . . . . . . . 11
⊢
(1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)) |
20 | 19 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝑂 → (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))) |
21 | 20 | sseld 3920 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝑂 → (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ (0...(𝑀 + 𝑁)))) |
22 | 21 | imdistani 569 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (0...(𝑀 + 𝑁)))) |
23 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝐶 ∈ 𝑂) |
24 | | elfzelz 13256 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ) |
25 | 24 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑗 ∈ ℤ) |
26 | 6, 7, 8, 9, 10, 23, 25 | ballotlemfelz 32457 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘𝑗) ∈ ℤ) |
27 | 26 | zred 12426 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘𝑗) ∈ ℝ) |
28 | 27 | sbimi 2077 |
. . . . . . . . 9
⊢ ([𝑖 / 𝑗](𝐶 ∈ 𝑂 ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) → [𝑖 / 𝑗]((𝐹‘𝐶)‘𝑗) ∈ ℝ) |
29 | | sban 2083 |
. . . . . . . . . 10
⊢ ([𝑖 / 𝑗](𝐶 ∈ 𝑂 ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ ([𝑖 / 𝑗]𝐶 ∈ 𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁)))) |
30 | | sbv 2091 |
. . . . . . . . . . 11
⊢ ([𝑖 / 𝑗]𝐶 ∈ 𝑂 ↔ 𝐶 ∈ 𝑂) |
31 | | clelsb1 2866 |
. . . . . . . . . . 11
⊢ ([𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑖 ∈ (0...(𝑀 + 𝑁))) |
32 | 30, 31 | anbi12i 627 |
. . . . . . . . . 10
⊢ (([𝑖 / 𝑗]𝐶 ∈ 𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (0...(𝑀 + 𝑁)))) |
33 | 29, 32 | bitri 274 |
. . . . . . . . 9
⊢ ([𝑖 / 𝑗](𝐶 ∈ 𝑂 ∧ 𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (0...(𝑀 + 𝑁)))) |
34 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑗((𝐹‘𝐶)‘𝑖) ∈ ℝ |
35 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → ((𝐹‘𝐶)‘𝑗) = ((𝐹‘𝐶)‘𝑖)) |
36 | 35 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (((𝐹‘𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹‘𝐶)‘𝑖) ∈ ℝ)) |
37 | 34, 36 | sbiev 2309 |
. . . . . . . . 9
⊢ ([𝑖 / 𝑗]((𝐹‘𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹‘𝐶)‘𝑖) ∈ ℝ) |
38 | 28, 33, 37 | 3imtr3i 291 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (0...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘𝑖) ∈ ℝ) |
39 | 22, 38 | syl 17 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐹‘𝐶)‘𝑖) ∈ ℝ) |
40 | | 0red 10978 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → 0 ∈
ℝ) |
41 | 39, 40 | lenltd 11121 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑂 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐹‘𝐶)‘𝑖) ≤ 0 ↔ ¬ 0 < ((𝐹‘𝐶)‘𝑖))) |
42 | 41 | rexbidva 3225 |
. . . . 5
⊢ (𝐶 ∈ 𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0 ↔ ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹‘𝐶)‘𝑖))) |
43 | | rexnal 3169 |
. . . . 5
⊢
(∃𝑖 ∈
(1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹‘𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖)) |
44 | 42, 43 | bitrdi 287 |
. . . 4
⊢ (𝐶 ∈ 𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0 ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
45 | 44 | pm5.32i 575 |
. . 3
⊢ ((𝐶 ∈ 𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0) ↔ (𝐶 ∈ 𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝐶)‘𝑖))) |
46 | 5, 18, 45 | 3bitr4i 303 |
. 2
⊢ ((𝐶 ∈ 𝑂 ∧ ¬ 𝐶 ∈ 𝐸) ↔ (𝐶 ∈ 𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0)) |
47 | 1, 46 | bitri 274 |
1
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) ↔ (𝐶 ∈ 𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0)) |