Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemodife Structured version   Visualization version   GIF version

Theorem ballotlemodife 34496
Description: Elements of (𝑂𝐸). (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlemodife (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemodife
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eldif 3927 . 2 (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ¬ 𝐶𝐸))
2 df-or 848 . . . 4 (((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂) → (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
3 pm3.24 402 . . . . 5 ¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂)
43a1bi 362 . . . 4 ((𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)) ↔ (¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂) → (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
52, 4bitr4i 278 . . 3 (((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
6 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
7 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
8 ballotth.o . . . . . . 7 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
9 ballotth.p . . . . . . 7 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ballotth.f . . . . . . 7 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
11 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
126, 7, 8, 9, 10, 11ballotleme 34495 . . . . . 6 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1312notbii 320 . . . . 5 𝐶𝐸 ↔ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1413anbi2i 623 . . . 4 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ (𝐶𝑂 ∧ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
15 ianor 983 . . . . 5 (¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)) ↔ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1615anbi2i 623 . . . 4 ((𝐶𝑂 ∧ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (𝐶𝑂 ∧ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
17 andi 1009 . . . 4 ((𝐶𝑂 ∧ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ ((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
1814, 16, 173bitri 297 . . 3 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ ((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
19 fz1ssfz0 13591 . . . . . . . . . . 11 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
2019a1i 11 . . . . . . . . . 10 (𝐶𝑂 → (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)))
2120sseld 3948 . . . . . . . . 9 (𝐶𝑂 → (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ (0...(𝑀 + 𝑁))))
2221imdistani 568 . . . . . . . 8 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
23 simpl 482 . . . . . . . . . . . 12 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝐶𝑂)
24 elfzelz 13492 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ)
2524adantl 481 . . . . . . . . . . . 12 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑗 ∈ ℤ)
266, 7, 8, 9, 10, 23, 25ballotlemfelz 34489 . . . . . . . . . . 11 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑗) ∈ ℤ)
2726zred 12645 . . . . . . . . . 10 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑗) ∈ ℝ)
2827sbimi 2075 . . . . . . . . 9 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → [𝑖 / 𝑗]((𝐹𝐶)‘𝑗) ∈ ℝ)
29 sban 2081 . . . . . . . . . 10 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ ([𝑖 / 𝑗]𝐶𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁))))
30 sbv 2089 . . . . . . . . . . 11 ([𝑖 / 𝑗]𝐶𝑂𝐶𝑂)
31 clelsb1 2856 . . . . . . . . . . 11 ([𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑖 ∈ (0...(𝑀 + 𝑁)))
3230, 31anbi12i 628 . . . . . . . . . 10 (([𝑖 / 𝑗]𝐶𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
3329, 32bitri 275 . . . . . . . . 9 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
34 nfv 1914 . . . . . . . . . 10 𝑗((𝐹𝐶)‘𝑖) ∈ ℝ
35 fveq2 6861 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝐹𝐶)‘𝑗) = ((𝐹𝐶)‘𝑖))
3635eleq1d 2814 . . . . . . . . . 10 (𝑗 = 𝑖 → (((𝐹𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹𝐶)‘𝑖) ∈ ℝ))
3734, 36sbiev 2313 . . . . . . . . 9 ([𝑖 / 𝑗]((𝐹𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹𝐶)‘𝑖) ∈ ℝ)
3828, 33, 373imtr3i 291 . . . . . . . 8 ((𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑖) ∈ ℝ)
3922, 38syl 17 . . . . . . 7 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑖) ∈ ℝ)
40 0red 11184 . . . . . . 7 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → 0 ∈ ℝ)
4139, 40lenltd 11327 . . . . . 6 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ¬ 0 < ((𝐹𝐶)‘𝑖)))
4241rexbidva 3156 . . . . 5 (𝐶𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0 ↔ ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖)))
43 rexnal 3083 . . . . 5 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4442, 43bitrdi 287 . . . 4 (𝐶𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0 ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4544pm5.32i 574 . . 3 ((𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0) ↔ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
465, 18, 453bitr4i 303 . 2 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
471, 46bitri 275 1 (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  [wsb 2065  wcel 2109  wral 3045  wrex 3054  {crab 3408  cdif 3914  cin 3916  wss 3917  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cz 12536  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  ballotlem5  34498  ballotlemrc  34529
  Copyright terms: Public domain W3C validator