Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemodife Structured version   Visualization version   GIF version

Theorem ballotlemodife 31759
Description: Elements of (𝑂𝐸). (Contributed by Thierry Arnoux, 7-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
Assertion
Ref Expression
ballotlemodife (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐸(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemodife
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 eldif 3949 . 2 (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ¬ 𝐶𝐸))
2 df-or 844 . . . 4 (((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂) → (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
3 pm3.24 405 . . . . 5 ¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂)
43a1bi 365 . . . 4 ((𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)) ↔ (¬ (𝐶𝑂 ∧ ¬ 𝐶𝑂) → (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
52, 4bitr4i 280 . . 3 (((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
6 ballotth.m . . . . . . 7 𝑀 ∈ ℕ
7 ballotth.n . . . . . . 7 𝑁 ∈ ℕ
8 ballotth.o . . . . . . 7 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
9 ballotth.p . . . . . . 7 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ballotth.f . . . . . . 7 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
11 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
126, 7, 8, 9, 10, 11ballotleme 31758 . . . . . 6 (𝐶𝐸 ↔ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1312notbii 322 . . . . 5 𝐶𝐸 ↔ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1413anbi2i 624 . . . 4 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ (𝐶𝑂 ∧ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
15 ianor 978 . . . . 5 (¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)) ↔ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
1615anbi2i 624 . . . 4 ((𝐶𝑂 ∧ ¬ (𝐶𝑂 ∧ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ (𝐶𝑂 ∧ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
17 andi 1004 . . . 4 ((𝐶𝑂 ∧ (¬ 𝐶𝑂 ∨ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))) ↔ ((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
1814, 16, 173bitri 299 . . 3 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ ((𝐶𝑂 ∧ ¬ 𝐶𝑂) ∨ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))))
19 fz1ssfz0 13006 . . . . . . . . . . 11 (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁))
2019a1i 11 . . . . . . . . . 10 (𝐶𝑂 → (1...(𝑀 + 𝑁)) ⊆ (0...(𝑀 + 𝑁)))
2120sseld 3969 . . . . . . . . 9 (𝐶𝑂 → (𝑖 ∈ (1...(𝑀 + 𝑁)) → 𝑖 ∈ (0...(𝑀 + 𝑁))))
2221imdistani 571 . . . . . . . 8 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
23 simpl 485 . . . . . . . . . . . 12 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝐶𝑂)
24 elfzelz 12911 . . . . . . . . . . . . 13 (𝑗 ∈ (0...(𝑀 + 𝑁)) → 𝑗 ∈ ℤ)
2524adantl 484 . . . . . . . . . . . 12 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → 𝑗 ∈ ℤ)
266, 7, 8, 9, 10, 23, 25ballotlemfelz 31752 . . . . . . . . . . 11 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑗) ∈ ℤ)
2726zred 12090 . . . . . . . . . 10 ((𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑗) ∈ ℝ)
2827sbimi 2078 . . . . . . . . 9 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) → [𝑖 / 𝑗]((𝐹𝐶)‘𝑗) ∈ ℝ)
29 sban 2085 . . . . . . . . . 10 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ ([𝑖 / 𝑗]𝐶𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁))))
30 sbv 2097 . . . . . . . . . . 11 ([𝑖 / 𝑗]𝐶𝑂𝐶𝑂)
31 clelsb3 2943 . . . . . . . . . . 11 ([𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑖 ∈ (0...(𝑀 + 𝑁)))
3230, 31anbi12i 628 . . . . . . . . . 10 (([𝑖 / 𝑗]𝐶𝑂 ∧ [𝑖 / 𝑗]𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
3329, 32bitri 277 . . . . . . . . 9 ([𝑖 / 𝑗](𝐶𝑂𝑗 ∈ (0...(𝑀 + 𝑁))) ↔ (𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))))
34 nfv 1914 . . . . . . . . . 10 𝑗((𝐹𝐶)‘𝑖) ∈ ℝ
35 fveq2 6673 . . . . . . . . . . 11 (𝑗 = 𝑖 → ((𝐹𝐶)‘𝑗) = ((𝐹𝐶)‘𝑖))
3635eleq1d 2900 . . . . . . . . . 10 (𝑗 = 𝑖 → (((𝐹𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹𝐶)‘𝑖) ∈ ℝ))
3734, 36sbiev 2329 . . . . . . . . 9 ([𝑖 / 𝑗]((𝐹𝐶)‘𝑗) ∈ ℝ ↔ ((𝐹𝐶)‘𝑖) ∈ ℝ)
3828, 33, 373imtr3i 293 . . . . . . . 8 ((𝐶𝑂𝑖 ∈ (0...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑖) ∈ ℝ)
3922, 38syl 17 . . . . . . 7 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐹𝐶)‘𝑖) ∈ ℝ)
40 0red 10647 . . . . . . 7 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → 0 ∈ ℝ)
4139, 40lenltd 10789 . . . . . 6 ((𝐶𝑂𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐹𝐶)‘𝑖) ≤ 0 ↔ ¬ 0 < ((𝐹𝐶)‘𝑖)))
4241rexbidva 3299 . . . . 5 (𝐶𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0 ↔ ∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖)))
43 rexnal 3241 . . . . 5 (∃𝑖 ∈ (1...(𝑀 + 𝑁)) ¬ 0 < ((𝐹𝐶)‘𝑖) ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖))
4442, 43syl6bb 289 . . . 4 (𝐶𝑂 → (∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0 ↔ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
4544pm5.32i 577 . . 3 ((𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0) ↔ (𝐶𝑂 ∧ ¬ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝐶)‘𝑖)))
465, 18, 453bitr4i 305 . 2 ((𝐶𝑂 ∧ ¬ 𝐶𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
471, 46bitri 277 1 (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1536  [wsb 2068  wcel 2113  wral 3141  wrex 3142  {crab 3145  cdif 3936  cin 3938  wss 3939  𝒫 cpw 4542   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  cz 11984  ...cfz 12895  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  ballotlem5  31761  ballotlemrc  31792
  Copyright terms: Public domain W3C validator