Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval0 Structured version   Visualization version   GIF version

Theorem ballotlemfval0 34532
Description: (𝐹𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfval0 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval0
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 0zd 12489 . . 3 (𝐶𝑂 → 0 ∈ ℤ)
81, 2, 3, 4, 5, 6, 7ballotlemfval 34526 . 2 (𝐶𝑂 → ((𝐹𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))))
9 fz10 13449 . . . . . . . 8 (1...0) = ∅
109ineq1i 4165 . . . . . . 7 ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶)
11 incom 4158 . . . . . . 7 (𝐶 ∩ ∅) = (∅ ∩ 𝐶)
12 in0 4344 . . . . . . 7 (𝐶 ∩ ∅) = ∅
1310, 11, 123eqtr2i 2762 . . . . . 6 ((1...0) ∩ 𝐶) = ∅
1413fveq2i 6833 . . . . 5 (♯‘((1...0) ∩ 𝐶)) = (♯‘∅)
15 hash0 14278 . . . . 5 (♯‘∅) = 0
1614, 15eqtri 2756 . . . 4 (♯‘((1...0) ∩ 𝐶)) = 0
179difeq1i 4071 . . . . . . 7 ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶)
18 0dif 4354 . . . . . . 7 (∅ ∖ 𝐶) = ∅
1917, 18eqtri 2756 . . . . . 6 ((1...0) ∖ 𝐶) = ∅
2019fveq2i 6833 . . . . 5 (♯‘((1...0) ∖ 𝐶)) = (♯‘∅)
2120, 15eqtri 2756 . . . 4 (♯‘((1...0) ∖ 𝐶)) = 0
2216, 21oveq12i 7366 . . 3 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0)
23 0m0e0 12249 . . 3 (0 − 0) = 0
2422, 23eqtri 2756 . 2 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0
258, 24eqtrdi 2784 1 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  cdif 3895  cin 3897  c0 4282  𝒫 cpw 4551  cmpt 5176  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018  cmin 11353   / cdiv 11783  cn 12134  cz 12477  ...cfz 13411  chash 14241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-hash 14242
This theorem is referenced by:  ballotlem4  34535  ballotlemi1  34539  ballotlemii  34540  ballotlemic  34543  ballotlem1c  34544
  Copyright terms: Public domain W3C validator