| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfval0 | Structured version Visualization version GIF version | ||
| Description: (𝐹‘𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| Ref | Expression |
|---|---|
| ballotlemfval0 | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
| 7 | 0zd 12608 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 0 ∈ ℤ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 34467 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶)))) |
| 9 | fz10 13567 | . . . . . . . 8 ⊢ (1...0) = ∅ | |
| 10 | 9 | ineq1i 4196 | . . . . . . 7 ⊢ ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶) |
| 11 | incom 4189 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = (∅ ∩ 𝐶) | |
| 12 | in0 4375 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = ∅ | |
| 13 | 10, 11, 12 | 3eqtr2i 2763 | . . . . . 6 ⊢ ((1...0) ∩ 𝐶) = ∅ |
| 14 | 13 | fveq2i 6889 | . . . . 5 ⊢ (♯‘((1...0) ∩ 𝐶)) = (♯‘∅) |
| 15 | hash0 14389 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 16 | 14, 15 | eqtri 2757 | . . . 4 ⊢ (♯‘((1...0) ∩ 𝐶)) = 0 |
| 17 | 9 | difeq1i 4102 | . . . . . . 7 ⊢ ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶) |
| 18 | 0dif 4385 | . . . . . . 7 ⊢ (∅ ∖ 𝐶) = ∅ | |
| 19 | 17, 18 | eqtri 2757 | . . . . . 6 ⊢ ((1...0) ∖ 𝐶) = ∅ |
| 20 | 19 | fveq2i 6889 | . . . . 5 ⊢ (♯‘((1...0) ∖ 𝐶)) = (♯‘∅) |
| 21 | 20, 15 | eqtri 2757 | . . . 4 ⊢ (♯‘((1...0) ∖ 𝐶)) = 0 |
| 22 | 16, 21 | oveq12i 7425 | . . 3 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0) |
| 23 | 0m0e0 12368 | . . 3 ⊢ (0 − 0) = 0 | |
| 24 | 22, 23 | eqtri 2757 | . 2 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0 |
| 25 | 8, 24 | eqtrdi 2785 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 ∖ cdif 3928 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 0cc0 11137 1c1 11138 + caddc 11140 − cmin 11474 / cdiv 11902 ℕcn 12248 ℤcz 12596 ...cfz 13529 ♯chash 14352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-hash 14353 |
| This theorem is referenced by: ballotlem4 34476 ballotlemi1 34480 ballotlemii 34481 ballotlemic 34484 ballotlem1c 34485 |
| Copyright terms: Public domain | W3C validator |