| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfval0 | Structured version Visualization version GIF version | ||
| Description: (𝐹‘𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| Ref | Expression |
|---|---|
| ballotlemfval0 | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
| 7 | 0zd 12541 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 0 ∈ ℤ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 34481 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶)))) |
| 9 | fz10 13506 | . . . . . . . 8 ⊢ (1...0) = ∅ | |
| 10 | 9 | ineq1i 4179 | . . . . . . 7 ⊢ ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶) |
| 11 | incom 4172 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = (∅ ∩ 𝐶) | |
| 12 | in0 4358 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = ∅ | |
| 13 | 10, 11, 12 | 3eqtr2i 2758 | . . . . . 6 ⊢ ((1...0) ∩ 𝐶) = ∅ |
| 14 | 13 | fveq2i 6861 | . . . . 5 ⊢ (♯‘((1...0) ∩ 𝐶)) = (♯‘∅) |
| 15 | hash0 14332 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 16 | 14, 15 | eqtri 2752 | . . . 4 ⊢ (♯‘((1...0) ∩ 𝐶)) = 0 |
| 17 | 9 | difeq1i 4085 | . . . . . . 7 ⊢ ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶) |
| 18 | 0dif 4368 | . . . . . . 7 ⊢ (∅ ∖ 𝐶) = ∅ | |
| 19 | 17, 18 | eqtri 2752 | . . . . . 6 ⊢ ((1...0) ∖ 𝐶) = ∅ |
| 20 | 19 | fveq2i 6861 | . . . . 5 ⊢ (♯‘((1...0) ∖ 𝐶)) = (♯‘∅) |
| 21 | 20, 15 | eqtri 2752 | . . . 4 ⊢ (♯‘((1...0) ∖ 𝐶)) = 0 |
| 22 | 16, 21 | oveq12i 7399 | . . 3 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0) |
| 23 | 0m0e0 12301 | . . 3 ⊢ (0 − 0) = 0 | |
| 24 | 22, 23 | eqtri 2752 | . 2 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0 |
| 25 | 8, 24 | eqtrdi 2780 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ∩ cin 3913 ∅c0 4296 𝒫 cpw 4563 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 − cmin 11405 / cdiv 11835 ℕcn 12186 ℤcz 12529 ...cfz 13468 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: ballotlem4 34490 ballotlemi1 34494 ballotlemii 34495 ballotlemic 34498 ballotlem1c 34499 |
| Copyright terms: Public domain | W3C validator |