![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfval0 | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
Ref | Expression |
---|---|
ballotlemfval0 | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
7 | 0zd 12645 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 0 ∈ ℤ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 34446 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶)))) |
9 | fz10 13599 | . . . . . . . 8 ⊢ (1...0) = ∅ | |
10 | 9 | ineq1i 4237 | . . . . . . 7 ⊢ ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶) |
11 | incom 4230 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = (∅ ∩ 𝐶) | |
12 | in0 4418 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = ∅ | |
13 | 10, 11, 12 | 3eqtr2i 2774 | . . . . . 6 ⊢ ((1...0) ∩ 𝐶) = ∅ |
14 | 13 | fveq2i 6918 | . . . . 5 ⊢ (♯‘((1...0) ∩ 𝐶)) = (♯‘∅) |
15 | hash0 14410 | . . . . 5 ⊢ (♯‘∅) = 0 | |
16 | 14, 15 | eqtri 2768 | . . . 4 ⊢ (♯‘((1...0) ∩ 𝐶)) = 0 |
17 | 9 | difeq1i 4145 | . . . . . . 7 ⊢ ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶) |
18 | 0dif 4428 | . . . . . . 7 ⊢ (∅ ∖ 𝐶) = ∅ | |
19 | 17, 18 | eqtri 2768 | . . . . . 6 ⊢ ((1...0) ∖ 𝐶) = ∅ |
20 | 19 | fveq2i 6918 | . . . . 5 ⊢ (♯‘((1...0) ∖ 𝐶)) = (♯‘∅) |
21 | 20, 15 | eqtri 2768 | . . . 4 ⊢ (♯‘((1...0) ∖ 𝐶)) = 0 |
22 | 16, 21 | oveq12i 7455 | . . 3 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0) |
23 | 0m0e0 12407 | . . 3 ⊢ (0 − 0) = 0 | |
24 | 22, 23 | eqtri 2768 | . 2 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0 |
25 | 8, 24 | eqtrdi 2796 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 𝒫 cpw 4622 ↦ cmpt 5249 ‘cfv 6568 (class class class)co 7443 0cc0 11178 1c1 11179 + caddc 11181 − cmin 11514 / cdiv 11941 ℕcn 12287 ℤcz 12633 ...cfz 13561 ♯chash 14373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-n0 12548 df-z 12634 df-uz 12898 df-fz 13562 df-hash 14374 |
This theorem is referenced by: ballotlem4 34455 ballotlemi1 34459 ballotlemii 34460 ballotlemic 34463 ballotlem1c 34464 |
Copyright terms: Public domain | W3C validator |