Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval0 Structured version   Visualization version   GIF version

Theorem ballotlemfval0 32362
Description: (𝐹𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfval0 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval0
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 0zd 12261 . . 3 (𝐶𝑂 → 0 ∈ ℤ)
81, 2, 3, 4, 5, 6, 7ballotlemfval 32356 . 2 (𝐶𝑂 → ((𝐹𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))))
9 fz10 13206 . . . . . . . 8 (1...0) = ∅
109ineq1i 4139 . . . . . . 7 ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶)
11 incom 4131 . . . . . . 7 (𝐶 ∩ ∅) = (∅ ∩ 𝐶)
12 in0 4322 . . . . . . 7 (𝐶 ∩ ∅) = ∅
1310, 11, 123eqtr2i 2772 . . . . . 6 ((1...0) ∩ 𝐶) = ∅
1413fveq2i 6759 . . . . 5 (♯‘((1...0) ∩ 𝐶)) = (♯‘∅)
15 hash0 14010 . . . . 5 (♯‘∅) = 0
1614, 15eqtri 2766 . . . 4 (♯‘((1...0) ∩ 𝐶)) = 0
179difeq1i 4049 . . . . . . 7 ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶)
18 0dif 4332 . . . . . . 7 (∅ ∖ 𝐶) = ∅
1917, 18eqtri 2766 . . . . . 6 ((1...0) ∖ 𝐶) = ∅
2019fveq2i 6759 . . . . 5 (♯‘((1...0) ∖ 𝐶)) = (♯‘∅)
2120, 15eqtri 2766 . . . 4 (♯‘((1...0) ∖ 𝐶)) = 0
2216, 21oveq12i 7267 . . 3 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0)
23 0m0e0 12023 . . 3 (0 − 0) = 0
2422, 23eqtri 2766 . 2 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0
258, 24eqtrdi 2795 1 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  cdif 3880  cin 3882  c0 4253  𝒫 cpw 4530  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135   / cdiv 11562  cn 11903  cz 12249  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  ballotlem4  32365  ballotlemi1  32369  ballotlemii  32370  ballotlemic  32373  ballotlem1c  32374
  Copyright terms: Public domain W3C validator