![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfval0 | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
Ref | Expression |
---|---|
ballotlemfval0 | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
7 | 0zd 11589 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 0 ∈ ℤ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 30884 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶)))) |
9 | fz10 12562 | . . . . . . . 8 ⊢ (1...0) = ∅ | |
10 | 9 | ineq1i 3961 | . . . . . . 7 ⊢ ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶) |
11 | incom 3956 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = (∅ ∩ 𝐶) | |
12 | in0 4112 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = ∅ | |
13 | 10, 11, 12 | 3eqtr2i 2799 | . . . . . 6 ⊢ ((1...0) ∩ 𝐶) = ∅ |
14 | 13 | fveq2i 6333 | . . . . 5 ⊢ (♯‘((1...0) ∩ 𝐶)) = (♯‘∅) |
15 | hash0 13353 | . . . . 5 ⊢ (♯‘∅) = 0 | |
16 | 14, 15 | eqtri 2793 | . . . 4 ⊢ (♯‘((1...0) ∩ 𝐶)) = 0 |
17 | 9 | difeq1i 3875 | . . . . . . 7 ⊢ ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶) |
18 | 0dif 4121 | . . . . . . 7 ⊢ (∅ ∖ 𝐶) = ∅ | |
19 | 17, 18 | eqtri 2793 | . . . . . 6 ⊢ ((1...0) ∖ 𝐶) = ∅ |
20 | 19 | fveq2i 6333 | . . . . 5 ⊢ (♯‘((1...0) ∖ 𝐶)) = (♯‘∅) |
21 | 20, 15 | eqtri 2793 | . . . 4 ⊢ (♯‘((1...0) ∖ 𝐶)) = 0 |
22 | 16, 21 | oveq12i 6803 | . . 3 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0) |
23 | 0m0e0 11330 | . . 3 ⊢ (0 − 0) = 0 | |
24 | 22, 23 | eqtri 2793 | . 2 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0 |
25 | 8, 24 | syl6eq 2821 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {crab 3065 ∖ cdif 3720 ∩ cin 3722 ∅c0 4063 𝒫 cpw 4297 ↦ cmpt 4863 ‘cfv 6029 (class class class)co 6791 0cc0 10136 1c1 10137 + caddc 10139 − cmin 10466 / cdiv 10884 ℕcn 11220 ℤcz 11577 ...cfz 12526 ♯chash 13314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-n0 11493 df-z 11578 df-uz 11887 df-fz 12527 df-hash 13315 |
This theorem is referenced by: ballotlem4 30893 ballotlemi1 30897 ballotlemii 30898 ballotlemic 30901 ballotlem1c 30902 |
Copyright terms: Public domain | W3C validator |