Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval0 Structured version   Visualization version   GIF version

Theorem ballotlemfval0 34473
Description: (𝐹𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfval0 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval0
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 0zd 12608 . . 3 (𝐶𝑂 → 0 ∈ ℤ)
81, 2, 3, 4, 5, 6, 7ballotlemfval 34467 . 2 (𝐶𝑂 → ((𝐹𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))))
9 fz10 13567 . . . . . . . 8 (1...0) = ∅
109ineq1i 4196 . . . . . . 7 ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶)
11 incom 4189 . . . . . . 7 (𝐶 ∩ ∅) = (∅ ∩ 𝐶)
12 in0 4375 . . . . . . 7 (𝐶 ∩ ∅) = ∅
1310, 11, 123eqtr2i 2763 . . . . . 6 ((1...0) ∩ 𝐶) = ∅
1413fveq2i 6889 . . . . 5 (♯‘((1...0) ∩ 𝐶)) = (♯‘∅)
15 hash0 14389 . . . . 5 (♯‘∅) = 0
1614, 15eqtri 2757 . . . 4 (♯‘((1...0) ∩ 𝐶)) = 0
179difeq1i 4102 . . . . . . 7 ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶)
18 0dif 4385 . . . . . . 7 (∅ ∖ 𝐶) = ∅
1917, 18eqtri 2757 . . . . . 6 ((1...0) ∖ 𝐶) = ∅
2019fveq2i 6889 . . . . 5 (♯‘((1...0) ∖ 𝐶)) = (♯‘∅)
2120, 15eqtri 2757 . . . 4 (♯‘((1...0) ∖ 𝐶)) = 0
2216, 21oveq12i 7425 . . 3 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0)
23 0m0e0 12368 . . 3 (0 − 0) = 0
2422, 23eqtri 2757 . 2 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0
258, 24eqtrdi 2785 1 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3419  cdif 3928  cin 3930  c0 4313  𝒫 cpw 4580  cmpt 5205  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   + caddc 11140  cmin 11474   / cdiv 11902  cn 12248  cz 12596  ...cfz 13529  chash 14352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-hash 14353
This theorem is referenced by:  ballotlem4  34476  ballotlemi1  34480  ballotlemii  34481  ballotlemic  34484  ballotlem1c  34485
  Copyright terms: Public domain W3C validator