Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval0 Structured version   Visualization version   GIF version

Theorem ballotlemfval0 34110
Description: (𝐹𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfval0 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval0
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 0zd 12595 . . 3 (𝐶𝑂 → 0 ∈ ℤ)
81, 2, 3, 4, 5, 6, 7ballotlemfval 34104 . 2 (𝐶𝑂 → ((𝐹𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))))
9 fz10 13549 . . . . . . . 8 (1...0) = ∅
109ineq1i 4205 . . . . . . 7 ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶)
11 incom 4198 . . . . . . 7 (𝐶 ∩ ∅) = (∅ ∩ 𝐶)
12 in0 4388 . . . . . . 7 (𝐶 ∩ ∅) = ∅
1310, 11, 123eqtr2i 2762 . . . . . 6 ((1...0) ∩ 𝐶) = ∅
1413fveq2i 6895 . . . . 5 (♯‘((1...0) ∩ 𝐶)) = (♯‘∅)
15 hash0 14353 . . . . 5 (♯‘∅) = 0
1614, 15eqtri 2756 . . . 4 (♯‘((1...0) ∩ 𝐶)) = 0
179difeq1i 4115 . . . . . . 7 ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶)
18 0dif 4398 . . . . . . 7 (∅ ∖ 𝐶) = ∅
1917, 18eqtri 2756 . . . . . 6 ((1...0) ∖ 𝐶) = ∅
2019fveq2i 6895 . . . . 5 (♯‘((1...0) ∖ 𝐶)) = (♯‘∅)
2120, 15eqtri 2756 . . . 4 (♯‘((1...0) ∖ 𝐶)) = 0
2216, 21oveq12i 7427 . . 3 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0)
23 0m0e0 12357 . . 3 (0 − 0) = 0
2422, 23eqtri 2756 . 2 ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0
258, 24eqtrdi 2784 1 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3428  cdif 3942  cin 3944  c0 4319  𝒫 cpw 4599  cmpt 5226  cfv 6543  (class class class)co 7415  0cc0 11133  1c1 11134   + caddc 11136  cmin 11469   / cdiv 11896  cn 12237  cz 12583  ...cfz 13511  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-hash 14317
This theorem is referenced by:  ballotlem4  34113  ballotlemi1  34117  ballotlemii  34118  ballotlemic  34121  ballotlem1c  34122
  Copyright terms: Public domain W3C validator