| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfval0 | Structured version Visualization version GIF version | ||
| Description: (𝐹‘𝐶) always starts counting at 0 . (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| Ref | Expression |
|---|---|
| ballotlemfval0 | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
| 7 | 0zd 12501 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 0 ∈ ℤ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 34460 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶)))) |
| 9 | fz10 13466 | . . . . . . . 8 ⊢ (1...0) = ∅ | |
| 10 | 9 | ineq1i 4169 | . . . . . . 7 ⊢ ((1...0) ∩ 𝐶) = (∅ ∩ 𝐶) |
| 11 | incom 4162 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = (∅ ∩ 𝐶) | |
| 12 | in0 4348 | . . . . . . 7 ⊢ (𝐶 ∩ ∅) = ∅ | |
| 13 | 10, 11, 12 | 3eqtr2i 2758 | . . . . . 6 ⊢ ((1...0) ∩ 𝐶) = ∅ |
| 14 | 13 | fveq2i 6829 | . . . . 5 ⊢ (♯‘((1...0) ∩ 𝐶)) = (♯‘∅) |
| 15 | hash0 14292 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 16 | 14, 15 | eqtri 2752 | . . . 4 ⊢ (♯‘((1...0) ∩ 𝐶)) = 0 |
| 17 | 9 | difeq1i 4075 | . . . . . . 7 ⊢ ((1...0) ∖ 𝐶) = (∅ ∖ 𝐶) |
| 18 | 0dif 4358 | . . . . . . 7 ⊢ (∅ ∖ 𝐶) = ∅ | |
| 19 | 17, 18 | eqtri 2752 | . . . . . 6 ⊢ ((1...0) ∖ 𝐶) = ∅ |
| 20 | 19 | fveq2i 6829 | . . . . 5 ⊢ (♯‘((1...0) ∖ 𝐶)) = (♯‘∅) |
| 21 | 20, 15 | eqtri 2752 | . . . 4 ⊢ (♯‘((1...0) ∖ 𝐶)) = 0 |
| 22 | 16, 21 | oveq12i 7365 | . . 3 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = (0 − 0) |
| 23 | 0m0e0 12261 | . . 3 ⊢ (0 − 0) = 0 | |
| 24 | 22, 23 | eqtri 2752 | . 2 ⊢ ((♯‘((1...0) ∩ 𝐶)) − (♯‘((1...0) ∖ 𝐶))) = 0 |
| 25 | 8, 24 | eqtrdi 2780 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3396 ∖ cdif 3902 ∩ cin 3904 ∅c0 4286 𝒫 cpw 4553 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 − cmin 11365 / cdiv 11795 ℕcn 12146 ℤcz 12489 ...cfz 13428 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: ballotlem4 34469 ballotlemi1 34473 ballotlemii 34474 ballotlemic 34477 ballotlem1c 34478 |
| Copyright terms: Public domain | W3C validator |