MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupss Structured version   Visualization version   GIF version

Theorem xrsupss 13149
Description: Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupss
StepHypRef Expression
1 xrsupsslem 13147 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 ssdifss 4087 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {-∞}) ⊆ ℝ*)
3 ssxr 11150 . . . . 5 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
4 df-3or 1088 . . . . . 6 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
5 neldifsn 4744 . . . . . . 7 ¬ -∞ ∈ (𝐴 ∖ {-∞})
65biorfi 937 . . . . . 6 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
74, 6bitr4i 278 . . . . 5 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
83, 7sylib 217 . . . 4 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
9 xrsupsslem 13147 . . . 4 (((𝐴 ∖ {-∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
102, 8, 9syl2anc2 586 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
11 xrsupexmnf 13145 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)))
12 snssi 4760 . . . . . 6 (-∞ ∈ 𝐴 → {-∞} ⊆ 𝐴)
13 undif 4433 . . . . . . . 8 ({-∞} ⊆ 𝐴 ↔ ({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴)
14 uncom 4105 . . . . . . . . 9 ({-∞} ∪ (𝐴 ∖ {-∞})) = ((𝐴 ∖ {-∞}) ∪ {-∞})
1514eqeq1i 2742 . . . . . . . 8 (({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
1613, 15bitri 275 . . . . . . 7 ({-∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
17 raleq 3306 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦))
18 rexeq 3307 . . . . . . . . . 10 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑦 < 𝑧))
1918imbi2d 341 . . . . . . . . 9 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2019ralbidv 3171 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2117, 20anbi12d 632 . . . . . . 7 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2216, 21sylbi 216 . . . . . 6 ({-∞} ⊆ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2312, 22syl 17 . . . . 5 (-∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2423rexbidv 3172 . . . 4 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2511, 24syl5ib 244 . . 3 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2610, 25mpan9 508 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
27 ssxr 11150 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
28 df-3or 1088 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
2927, 28sylib 217 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
301, 26, 29mpjaodan 957 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3o 1086   = wceq 1541  wcel 2106  wral 3062  wrex 3071  cdif 3899  cun 3900  wss 3902  {csn 4578   class class class wbr 5097  cr 10976  +∞cpnf 11112  -∞cmnf 11113  *cxr 11114   < clt 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-po 5537  df-so 5538  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314
This theorem is referenced by:  supxrcl  13155  supxrun  13156  supxrunb1  13159  supxrunb2  13160  supxrub  13164  supxrlub  13165  xrsupssd  31367  xrsclat  31574  itg2addnclem  35982
  Copyright terms: Public domain W3C validator