MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupss Structured version   Visualization version   GIF version

Theorem xrsupss 13237
Description: Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupss
StepHypRef Expression
1 xrsupsslem 13235 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 ssdifss 4099 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {-∞}) ⊆ ℝ*)
3 ssxr 11232 . . . . 5 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
4 df-3or 1089 . . . . . 6 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
5 neldifsn 4756 . . . . . . 7 ¬ -∞ ∈ (𝐴 ∖ {-∞})
65biorfi 938 . . . . . 6 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
74, 6bitr4i 278 . . . . 5 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
83, 7sylib 217 . . . 4 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
9 xrsupsslem 13235 . . . 4 (((𝐴 ∖ {-∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
102, 8, 9syl2anc2 586 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
11 xrsupexmnf 13233 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)))
12 snssi 4772 . . . . . 6 (-∞ ∈ 𝐴 → {-∞} ⊆ 𝐴)
13 undif 4445 . . . . . . . 8 ({-∞} ⊆ 𝐴 ↔ ({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴)
14 uncom 4117 . . . . . . . . 9 ({-∞} ∪ (𝐴 ∖ {-∞})) = ((𝐴 ∖ {-∞}) ∪ {-∞})
1514eqeq1i 2738 . . . . . . . 8 (({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
1613, 15bitri 275 . . . . . . 7 ({-∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
17 raleq 3308 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦))
18 rexeq 3309 . . . . . . . . . 10 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑦 < 𝑧))
1918imbi2d 341 . . . . . . . . 9 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2019ralbidv 3171 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2117, 20anbi12d 632 . . . . . . 7 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2216, 21sylbi 216 . . . . . 6 ({-∞} ⊆ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2312, 22syl 17 . . . . 5 (-∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2423rexbidv 3172 . . . 4 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2511, 24imbitrid 243 . . 3 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2610, 25mpan9 508 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
27 ssxr 11232 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
28 df-3or 1089 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
2927, 28sylib 217 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
301, 26, 29mpjaodan 958 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087   = wceq 1542  wcel 2107  wral 3061  wrex 3070  cdif 3911  cun 3912  wss 3914  {csn 4590   class class class wbr 5109  cr 11058  +∞cpnf 11194  -∞cmnf 11195  *cxr 11196   < clt 11197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396
This theorem is referenced by:  supxrcl  13243  supxrun  13244  supxrunb1  13247  supxrunb2  13248  supxrub  13252  supxrlub  13253  xrsupssd  31718  xrsclat  31927  itg2addnclem  36179
  Copyright terms: Public domain W3C validator