Proof of Theorem xrsupss
| Step | Hyp | Ref
| Expression |
| 1 | | xrsupsslem 13349 |
. 2
⊢ ((𝐴 ⊆ ℝ*
∧ (𝐴 ⊆ ℝ
∨ +∞ ∈ 𝐴))
→ ∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 2 | | ssdifss 4140 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ (𝐴 ∖
{-∞}) ⊆ ℝ*) |
| 3 | | ssxr 11330 |
. . . . 5
⊢ ((𝐴 ∖ {-∞}) ⊆
ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨
+∞ ∈ (𝐴 ∖
{-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞}))) |
| 4 | | df-3or 1088 |
. . . . . 6
⊢ (((𝐴 ∖ {-∞}) ⊆
ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈
(𝐴 ∖ {-∞}))
↔ (((𝐴 ∖
{-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈
(𝐴 ∖
{-∞}))) |
| 5 | | neldifsn 4792 |
. . . . . . 7
⊢ ¬
-∞ ∈ (𝐴 ∖
{-∞}) |
| 6 | 5 | biorfri 940 |
. . . . . 6
⊢ (((𝐴 ∖ {-∞}) ⊆
ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆
ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈
(𝐴 ∖
{-∞}))) |
| 7 | 4, 6 | bitr4i 278 |
. . . . 5
⊢ (((𝐴 ∖ {-∞}) ⊆
ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈
(𝐴 ∖ {-∞}))
↔ ((𝐴 ∖
{-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}))) |
| 8 | 3, 7 | sylib 218 |
. . . 4
⊢ ((𝐴 ∖ {-∞}) ⊆
ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨
+∞ ∈ (𝐴 ∖
{-∞}))) |
| 9 | | xrsupsslem 13349 |
. . . 4
⊢ (((𝐴 ∖ {-∞}) ⊆
ℝ* ∧ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨
+∞ ∈ (𝐴 ∖
{-∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧))) |
| 10 | 2, 8, 9 | syl2anc2 585 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ ∃𝑥 ∈
ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧))) |
| 11 | | xrsupexmnf 13347 |
. . . 4
⊢
(∃𝑥 ∈
ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬
𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧))) |
| 12 | | snssi 4808 |
. . . . . 6
⊢ (-∞
∈ 𝐴 → {-∞}
⊆ 𝐴) |
| 13 | | undif 4482 |
. . . . . . . 8
⊢
({-∞} ⊆ 𝐴 ↔ ({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴) |
| 14 | | uncom 4158 |
. . . . . . . . 9
⊢
({-∞} ∪ (𝐴
∖ {-∞})) = ((𝐴
∖ {-∞}) ∪ {-∞}) |
| 15 | 14 | eqeq1i 2742 |
. . . . . . . 8
⊢
(({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) =
𝐴) |
| 16 | 13, 15 | bitri 275 |
. . . . . . 7
⊢
({-∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) =
𝐴) |
| 17 | | raleq 3323 |
. . . . . . . 8
⊢ (((𝐴 ∖ {-∞}) ∪
{-∞}) = 𝐴 →
(∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪
{-∞}) ¬ 𝑥 <
𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦)) |
| 18 | | rexeq 3322 |
. . . . . . . . . 10
⊢ (((𝐴 ∖ {-∞}) ∪
{-∞}) = 𝐴 →
(∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪
{-∞})𝑦 < 𝑧 ↔ ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
| 19 | 18 | imbi2d 340 |
. . . . . . . . 9
⊢ (((𝐴 ∖ {-∞}) ∪
{-∞}) = 𝐴 →
((𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 20 | 19 | ralbidv 3178 |
. . . . . . . 8
⊢ (((𝐴 ∖ {-∞}) ∪
{-∞}) = 𝐴 →
(∀𝑦 ∈
ℝ* (𝑦 <
𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 21 | 17, 20 | anbi12d 632 |
. . . . . . 7
⊢ (((𝐴 ∖ {-∞}) ∪
{-∞}) = 𝐴 →
((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪
{-∞}) ¬ 𝑥 <
𝑦 ∧ ∀𝑦 ∈ ℝ*
(𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 22 | 16, 21 | sylbi 217 |
. . . . . 6
⊢
({-∞} ⊆ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬
𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 23 | 12, 22 | syl 17 |
. . . . 5
⊢ (-∞
∈ 𝐴 →
((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪
{-∞}) ¬ 𝑥 <
𝑦 ∧ ∀𝑦 ∈ ℝ*
(𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 24 | 23 | rexbidv 3179 |
. . . 4
⊢ (-∞
∈ 𝐴 →
(∃𝑥 ∈
ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬
𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 25 | 11, 24 | imbitrid 244 |
. . 3
⊢ (-∞
∈ 𝐴 →
(∃𝑥 ∈
ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)))) |
| 26 | 10, 25 | mpan9 506 |
. 2
⊢ ((𝐴 ⊆ ℝ*
∧ -∞ ∈ 𝐴)
→ ∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
| 27 | | ssxr 11330 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ (𝐴 ⊆ ℝ
∨ +∞ ∈ 𝐴 ∨
-∞ ∈ 𝐴)) |
| 28 | | df-3or 1088 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∨ +∞
∈ 𝐴 ∨ -∞
∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞
∈ 𝐴) ∨ -∞
∈ 𝐴)) |
| 29 | 27, 28 | sylib 218 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ ((𝐴 ⊆ ℝ
∨ +∞ ∈ 𝐴)
∨ -∞ ∈ 𝐴)) |
| 30 | 1, 26, 29 | mpjaodan 961 |
1
⊢ (𝐴 ⊆ ℝ*
→ ∃𝑥 ∈
ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |