MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupss Structured version   Visualization version   GIF version

Theorem xrsupss 12387
Description: Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupss
StepHypRef Expression
1 xrsupsslem 12385 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 ssdifss 3940 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {-∞}) ⊆ ℝ*)
3 ssxr 10398 . . . . . 6 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
4 df-3or 1109 . . . . . . 7 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
5 neldifsn 4512 . . . . . . . 8 ¬ -∞ ∈ (𝐴 ∖ {-∞})
65biorfi 963 . . . . . . 7 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
74, 6bitr4i 270 . . . . . 6 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
83, 7sylib 210 . . . . 5 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
9 xrsupsslem 12385 . . . . 5 (((𝐴 ∖ {-∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
108, 9mpdan 679 . . . 4 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
112, 10syl 17 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
12 xrsupexmnf 12383 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)))
13 snssi 4528 . . . . . 6 (-∞ ∈ 𝐴 → {-∞} ⊆ 𝐴)
14 undif 4244 . . . . . . . 8 ({-∞} ⊆ 𝐴 ↔ ({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴)
15 uncom 3956 . . . . . . . . 9 ({-∞} ∪ (𝐴 ∖ {-∞})) = ((𝐴 ∖ {-∞}) ∪ {-∞})
1615eqeq1i 2805 . . . . . . . 8 (({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
1714, 16bitri 267 . . . . . . 7 ({-∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
18 raleq 3322 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦))
19 rexeq 3323 . . . . . . . . . 10 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑦 < 𝑧))
2019imbi2d 332 . . . . . . . . 9 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2120ralbidv 3168 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2218, 21anbi12d 625 . . . . . . 7 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2317, 22sylbi 209 . . . . . 6 ({-∞} ⊆ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2413, 23syl 17 . . . . 5 (-∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2524rexbidv 3234 . . . 4 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2612, 25syl5ib 236 . . 3 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2711, 26mpan9 503 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
28 ssxr 10398 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
29 df-3or 1109 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
3028, 29sylib 210 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
311, 27, 30mpjaodan 982 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874  w3o 1107   = wceq 1653  wcel 2157  wral 3090  wrex 3091  cdif 3767  cun 3768  wss 3770  {csn 4369   class class class wbr 4844  cr 10224  +∞cpnf 10361  -∞cmnf 10362  *cxr 10363   < clt 10364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-po 5234  df-so 5235  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560
This theorem is referenced by:  supxrcl  12393  supxrun  12394  supxrunb1  12397  supxrunb2  12398  supxrub  12402  supxrlub  12403  xrsupssd  30041  xrsclat  30195  itg2addnclem  33948
  Copyright terms: Public domain W3C validator