MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupss Structured version   Visualization version   GIF version

Theorem xrsupss 13351
Description: Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupss (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupss
StepHypRef Expression
1 xrsupsslem 13349 . 2 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 ssdifss 4140 . . . 4 (𝐴 ⊆ ℝ* → (𝐴 ∖ {-∞}) ⊆ ℝ*)
3 ssxr 11330 . . . . 5 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
4 df-3or 1088 . . . . . 6 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
5 neldifsn 4792 . . . . . . 7 ¬ -∞ ∈ (𝐴 ∖ {-∞})
65biorfri 940 . . . . . 6 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ↔ (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})) ∨ -∞ ∈ (𝐴 ∖ {-∞})))
74, 6bitr4i 278 . . . . 5 (((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}) ∨ -∞ ∈ (𝐴 ∖ {-∞})) ↔ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
83, 7sylib 218 . . . 4 ((𝐴 ∖ {-∞}) ⊆ ℝ* → ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞})))
9 xrsupsslem 13349 . . . 4 (((𝐴 ∖ {-∞}) ⊆ ℝ* ∧ ((𝐴 ∖ {-∞}) ⊆ ℝ ∨ +∞ ∈ (𝐴 ∖ {-∞}))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
102, 8, 9syl2anc2 585 . . 3 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)))
11 xrsupexmnf 13347 . . . 4 (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)))
12 snssi 4808 . . . . . 6 (-∞ ∈ 𝐴 → {-∞} ⊆ 𝐴)
13 undif 4482 . . . . . . . 8 ({-∞} ⊆ 𝐴 ↔ ({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴)
14 uncom 4158 . . . . . . . . 9 ({-∞} ∪ (𝐴 ∖ {-∞})) = ((𝐴 ∖ {-∞}) ∪ {-∞})
1514eqeq1i 2742 . . . . . . . 8 (({-∞} ∪ (𝐴 ∖ {-∞})) = 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
1613, 15bitri 275 . . . . . . 7 ({-∞} ⊆ 𝐴 ↔ ((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴)
17 raleq 3323 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑥 < 𝑦))
18 rexeq 3322 . . . . . . . . . 10 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑦 < 𝑧))
1918imbi2d 340 . . . . . . . . 9 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2019ralbidv 3178 . . . . . . . 8 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2117, 20anbi12d 632 . . . . . . 7 (((𝐴 ∖ {-∞}) ∪ {-∞}) = 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2216, 21sylbi 217 . . . . . 6 ({-∞} ⊆ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2312, 22syl 17 . . . . 5 (-∞ ∈ 𝐴 → ((∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2423rexbidv 3179 . . . 4 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ((𝐴 ∖ {-∞}) ∪ {-∞})𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2511, 24imbitrid 244 . . 3 (-∞ ∈ 𝐴 → (∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∖ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∖ {-∞})𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
2610, 25mpan9 506 . 2 ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
27 ssxr 11330 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
28 df-3or 1088 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
2927, 28sylib 218 . 2 (𝐴 ⊆ ℝ* → ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴) ∨ -∞ ∈ 𝐴))
301, 26, 29mpjaodan 961 1 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3o 1086   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cdif 3948  cun 3949  wss 3951  {csn 4626   class class class wbr 5143  cr 11154  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294   < clt 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495
This theorem is referenced by:  supxrcl  13357  supxrun  13358  supxrunb1  13361  supxrunb2  13362  supxrub  13366  supxrlub  13367  xrsupssd  32763  xrsclat  33013  itg2addnclem  37678
  Copyright terms: Public domain W3C validator