MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthprc Structured version   Visualization version   GIF version

Theorem opthprc 5718
Description: Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.)
Assertion
Ref Expression
opthprc (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opthprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2823 . . . . 5 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) → (⟨𝑥, ∅⟩ ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) ↔ ⟨𝑥, ∅⟩ ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}}))))
2 0ex 5277 . . . . . . . . 9 ∅ ∈ V
32snid 4638 . . . . . . . 8 ∅ ∈ {∅}
4 opelxp 5690 . . . . . . . 8 (⟨𝑥, ∅⟩ ∈ (𝐴 × {∅}) ↔ (𝑥𝐴 ∧ ∅ ∈ {∅}))
53, 4mpbiran2 710 . . . . . . 7 (⟨𝑥, ∅⟩ ∈ (𝐴 × {∅}) ↔ 𝑥𝐴)
6 opelxp 5690 . . . . . . . 8 (⟨𝑥, ∅⟩ ∈ (𝐵 × {{∅}}) ↔ (𝑥𝐵 ∧ ∅ ∈ {{∅}}))
7 0nep0 5328 . . . . . . . . . 10 ∅ ≠ {∅}
82elsn 4616 . . . . . . . . . 10 (∅ ∈ {{∅}} ↔ ∅ = {∅})
97, 8nemtbir 3028 . . . . . . . . 9 ¬ ∅ ∈ {{∅}}
109bianfi 533 . . . . . . . 8 (∅ ∈ {{∅}} ↔ (𝑥𝐵 ∧ ∅ ∈ {{∅}}))
116, 10bitr4i 278 . . . . . . 7 (⟨𝑥, ∅⟩ ∈ (𝐵 × {{∅}}) ↔ ∅ ∈ {{∅}})
125, 11orbi12i 914 . . . . . 6 ((⟨𝑥, ∅⟩ ∈ (𝐴 × {∅}) ∨ ⟨𝑥, ∅⟩ ∈ (𝐵 × {{∅}})) ↔ (𝑥𝐴 ∨ ∅ ∈ {{∅}}))
13 elun 4128 . . . . . 6 (⟨𝑥, ∅⟩ ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) ↔ (⟨𝑥, ∅⟩ ∈ (𝐴 × {∅}) ∨ ⟨𝑥, ∅⟩ ∈ (𝐵 × {{∅}})))
149biorfri 939 . . . . . 6 (𝑥𝐴 ↔ (𝑥𝐴 ∨ ∅ ∈ {{∅}}))
1512, 13, 143bitr4ri 304 . . . . 5 (𝑥𝐴 ↔ ⟨𝑥, ∅⟩ ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})))
16 opelxp 5690 . . . . . . . 8 (⟨𝑥, ∅⟩ ∈ (𝐶 × {∅}) ↔ (𝑥𝐶 ∧ ∅ ∈ {∅}))
173, 16mpbiran2 710 . . . . . . 7 (⟨𝑥, ∅⟩ ∈ (𝐶 × {∅}) ↔ 𝑥𝐶)
18 opelxp 5690 . . . . . . . 8 (⟨𝑥, ∅⟩ ∈ (𝐷 × {{∅}}) ↔ (𝑥𝐷 ∧ ∅ ∈ {{∅}}))
199bianfi 533 . . . . . . . 8 (∅ ∈ {{∅}} ↔ (𝑥𝐷 ∧ ∅ ∈ {{∅}}))
2018, 19bitr4i 278 . . . . . . 7 (⟨𝑥, ∅⟩ ∈ (𝐷 × {{∅}}) ↔ ∅ ∈ {{∅}})
2117, 20orbi12i 914 . . . . . 6 ((⟨𝑥, ∅⟩ ∈ (𝐶 × {∅}) ∨ ⟨𝑥, ∅⟩ ∈ (𝐷 × {{∅}})) ↔ (𝑥𝐶 ∨ ∅ ∈ {{∅}}))
22 elun 4128 . . . . . 6 (⟨𝑥, ∅⟩ ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (⟨𝑥, ∅⟩ ∈ (𝐶 × {∅}) ∨ ⟨𝑥, ∅⟩ ∈ (𝐷 × {{∅}})))
239biorfri 939 . . . . . 6 (𝑥𝐶 ↔ (𝑥𝐶 ∨ ∅ ∈ {{∅}}))
2421, 22, 233bitr4ri 304 . . . . 5 (𝑥𝐶 ↔ ⟨𝑥, ∅⟩ ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})))
251, 15, 243bitr4g 314 . . . 4 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) → (𝑥𝐴𝑥𝐶))
2625eqrdv 2733 . . 3 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) → 𝐴 = 𝐶)
27 eleq2 2823 . . . . 5 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) → (⟨𝑥, {∅}⟩ ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) ↔ ⟨𝑥, {∅}⟩ ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}}))))
28 opelxp 5690 . . . . . . . 8 (⟨𝑥, {∅}⟩ ∈ (𝐴 × {∅}) ↔ (𝑥𝐴 ∧ {∅} ∈ {∅}))
29 snex 5406 . . . . . . . . . . . 12 {∅} ∈ V
3029elsn 4616 . . . . . . . . . . 11 ({∅} ∈ {∅} ↔ {∅} = ∅)
31 eqcom 2742 . . . . . . . . . . 11 ({∅} = ∅ ↔ ∅ = {∅})
3230, 31bitri 275 . . . . . . . . . 10 ({∅} ∈ {∅} ↔ ∅ = {∅})
337, 32nemtbir 3028 . . . . . . . . 9 ¬ {∅} ∈ {∅}
3433bianfi 533 . . . . . . . 8 ({∅} ∈ {∅} ↔ (𝑥𝐴 ∧ {∅} ∈ {∅}))
3528, 34bitr4i 278 . . . . . . 7 (⟨𝑥, {∅}⟩ ∈ (𝐴 × {∅}) ↔ {∅} ∈ {∅})
3629snid 4638 . . . . . . . 8 {∅} ∈ {{∅}}
37 opelxp 5690 . . . . . . . 8 (⟨𝑥, {∅}⟩ ∈ (𝐵 × {{∅}}) ↔ (𝑥𝐵 ∧ {∅} ∈ {{∅}}))
3836, 37mpbiran2 710 . . . . . . 7 (⟨𝑥, {∅}⟩ ∈ (𝐵 × {{∅}}) ↔ 𝑥𝐵)
3935, 38orbi12i 914 . . . . . 6 ((⟨𝑥, {∅}⟩ ∈ (𝐴 × {∅}) ∨ ⟨𝑥, {∅}⟩ ∈ (𝐵 × {{∅}})) ↔ ({∅} ∈ {∅} ∨ 𝑥𝐵))
40 elun 4128 . . . . . 6 (⟨𝑥, {∅}⟩ ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) ↔ (⟨𝑥, {∅}⟩ ∈ (𝐴 × {∅}) ∨ ⟨𝑥, {∅}⟩ ∈ (𝐵 × {{∅}})))
4133biorfi 938 . . . . . 6 (𝑥𝐵 ↔ ({∅} ∈ {∅} ∨ 𝑥𝐵))
4239, 40, 413bitr4ri 304 . . . . 5 (𝑥𝐵 ↔ ⟨𝑥, {∅}⟩ ∈ ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})))
43 opelxp 5690 . . . . . . . 8 (⟨𝑥, {∅}⟩ ∈ (𝐶 × {∅}) ↔ (𝑥𝐶 ∧ {∅} ∈ {∅}))
4433bianfi 533 . . . . . . . 8 ({∅} ∈ {∅} ↔ (𝑥𝐶 ∧ {∅} ∈ {∅}))
4543, 44bitr4i 278 . . . . . . 7 (⟨𝑥, {∅}⟩ ∈ (𝐶 × {∅}) ↔ {∅} ∈ {∅})
46 opelxp 5690 . . . . . . . 8 (⟨𝑥, {∅}⟩ ∈ (𝐷 × {{∅}}) ↔ (𝑥𝐷 ∧ {∅} ∈ {{∅}}))
4736, 46mpbiran2 710 . . . . . . 7 (⟨𝑥, {∅}⟩ ∈ (𝐷 × {{∅}}) ↔ 𝑥𝐷)
4845, 47orbi12i 914 . . . . . 6 ((⟨𝑥, {∅}⟩ ∈ (𝐶 × {∅}) ∨ ⟨𝑥, {∅}⟩ ∈ (𝐷 × {{∅}})) ↔ ({∅} ∈ {∅} ∨ 𝑥𝐷))
49 elun 4128 . . . . . 6 (⟨𝑥, {∅}⟩ ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (⟨𝑥, {∅}⟩ ∈ (𝐶 × {∅}) ∨ ⟨𝑥, {∅}⟩ ∈ (𝐷 × {{∅}})))
5033biorfi 938 . . . . . 6 (𝑥𝐷 ↔ ({∅} ∈ {∅} ∨ 𝑥𝐷))
5148, 49, 503bitr4ri 304 . . . . 5 (𝑥𝐷 ↔ ⟨𝑥, {∅}⟩ ∈ ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})))
5227, 42, 513bitr4g 314 . . . 4 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) → (𝑥𝐵𝑥𝐷))
5352eqrdv 2733 . . 3 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) → 𝐵 = 𝐷)
5426, 53jca 511 . 2 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) → (𝐴 = 𝐶𝐵 = 𝐷))
55 xpeq1 5668 . . 3 (𝐴 = 𝐶 → (𝐴 × {∅}) = (𝐶 × {∅}))
56 xpeq1 5668 . . 3 (𝐵 = 𝐷 → (𝐵 × {{∅}}) = (𝐷 × {{∅}}))
57 uneq12 4138 . . 3 (((𝐴 × {∅}) = (𝐶 × {∅}) ∧ (𝐵 × {{∅}}) = (𝐷 × {{∅}})) → ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})))
5855, 56, 57syl2an 596 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → ((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})))
5954, 58impbii 209 1 (((𝐴 × {∅}) ∪ (𝐵 × {{∅}})) = ((𝐶 × {∅}) ∪ (𝐷 × {{∅}})) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  cun 3924  c0 4308  {csn 4601  cop 4607   × cxp 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-opab 5182  df-xp 5660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator