Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ind1a | Structured version Visualization version GIF version |
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
Ref | Expression |
---|---|
ind1a | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indfval 31984 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
2 | 1 | eqeq1d 2740 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1)) |
3 | eqid 2738 | . . . . 5 ⊢ 1 = 1 | |
4 | 3 | biantru 530 | . . . 4 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 1 = 1)) |
5 | ax-1ne0 10940 | . . . . . 6 ⊢ 1 ≠ 0 | |
6 | 5 | neii 2945 | . . . . 5 ⊢ ¬ 1 = 0 |
7 | 6 | biorfi 936 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0)) |
8 | 6 | bianfi 534 | . . . . 5 ⊢ (1 = 0 ↔ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0)) |
9 | 8 | orbi2i 910 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
10 | 4, 7, 9 | 3bitri 297 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
11 | eqif 4500 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) | |
12 | eqcom 2745 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1) | |
13 | 10, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (if(𝑋 ∈ 𝐴, 1, 0) = 1 ↔ 𝑋 ∈ 𝐴) |
14 | 2, 13 | bitrdi 287 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ifcif 4459 ‘cfv 6433 0cc0 10871 1c1 10872 𝟭cind 31978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-ind 31979 |
This theorem is referenced by: indpi1 31988 prodindf 31991 indpreima 31993 |
Copyright terms: Public domain | W3C validator |