Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1a Structured version   Visualization version   GIF version

Theorem ind1a 33313
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
ind1a ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))

Proof of Theorem ind1a
StepHypRef Expression
1 indfval 33310 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
21eqeq1d 2732 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋𝐴, 1, 0) = 1))
3 eqid 2730 . . . . 5 1 = 1
43biantru 528 . . . 4 (𝑋𝐴 ↔ (𝑋𝐴 ∧ 1 = 1))
5 ax-1ne0 11183 . . . . . 6 1 ≠ 0
65neii 2940 . . . . 5 ¬ 1 = 0
76biorfi 935 . . . 4 ((𝑋𝐴 ∧ 1 = 1) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0))
86bianfi 532 . . . . 5 (1 = 0 ↔ (¬ 𝑋𝐴 ∧ 1 = 0))
98orbi2i 909 . . . 4 (((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
104, 7, 93bitri 296 . . 3 (𝑋𝐴 ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
11 eqif 4570 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
12 eqcom 2737 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ if(𝑋𝐴, 1, 0) = 1)
1310, 11, 123bitr2ri 299 . 2 (if(𝑋𝐴, 1, 0) = 1 ↔ 𝑋𝐴)
142, 13bitrdi 286 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  w3a 1085   = wceq 1539  wcel 2104  wss 3949  ifcif 4529  cfv 6544  0cc0 11114  1c1 11115  𝟭cind 33304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-i2m1 11182  ax-1ne0 11183  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-ind 33305
This theorem is referenced by:  indpi1  33314  prodindf  33317  indpreima  33319
  Copyright terms: Public domain W3C validator