Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1a Structured version   Visualization version   GIF version

Theorem ind1a 32866
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
ind1a ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))

Proof of Theorem ind1a
StepHypRef Expression
1 indfval 32863 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
21eqeq1d 2735 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋𝐴, 1, 0) = 1))
3 eqid 2733 . . . . 5 1 = 1
43biantru 529 . . . 4 (𝑋𝐴 ↔ (𝑋𝐴 ∧ 1 = 1))
5 ax-1ne0 11086 . . . . . 6 1 ≠ 0
65neii 2931 . . . . 5 ¬ 1 = 0
76biorfri 939 . . . 4 ((𝑋𝐴 ∧ 1 = 1) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0))
86bianfi 533 . . . . 5 (1 = 0 ↔ (¬ 𝑋𝐴 ∧ 1 = 0))
98orbi2i 912 . . . 4 (((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
104, 7, 93bitri 297 . . 3 (𝑋𝐴 ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
11 eqif 4518 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
12 eqcom 2740 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ if(𝑋𝐴, 1, 0) = 1)
1310, 11, 123bitr2ri 300 . 2 (if(𝑋𝐴, 1, 0) = 1 ↔ 𝑋𝐴)
142, 13bitrdi 287 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wss 3898  ifcif 4476  cfv 6489  0cc0 11017  1c1 11018  𝟭cind 32857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-i2m1 11085  ax-1ne0 11086  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-ind 32858
This theorem is referenced by:  indpi1  32869  prodindf  32872  indpreima  32875  esplymhp  33654
  Copyright terms: Public domain W3C validator