| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ind1a | Structured version Visualization version GIF version | ||
| Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
| Ref | Expression |
|---|---|
| ind1a | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indfval 32779 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
| 2 | 1 | eqeq1d 2731 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1)) |
| 3 | eqid 2729 | . . . . 5 ⊢ 1 = 1 | |
| 4 | 3 | biantru 529 | . . . 4 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 1 = 1)) |
| 5 | ax-1ne0 11137 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 6 | 5 | neii 2927 | . . . . 5 ⊢ ¬ 1 = 0 |
| 7 | 6 | biorfri 939 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0)) |
| 8 | 6 | bianfi 533 | . . . . 5 ⊢ (1 = 0 ↔ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0)) |
| 9 | 8 | orbi2i 912 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
| 10 | 4, 7, 9 | 3bitri 297 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
| 11 | eqif 4530 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) | |
| 12 | eqcom 2736 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1) | |
| 13 | 10, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (if(𝑋 ∈ 𝐴, 1, 0) = 1 ↔ 𝑋 ∈ 𝐴) |
| 14 | 2, 13 | bitrdi 287 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ifcif 4488 ‘cfv 6511 0cc0 11068 1c1 11069 𝟭cind 32773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-ind 32774 |
| This theorem is referenced by: indpi1 32783 prodindf 32786 indpreima 32788 |
| Copyright terms: Public domain | W3C validator |