![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ind1a | Structured version Visualization version GIF version |
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
Ref | Expression |
---|---|
ind1a | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indfval 33980 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
2 | 1 | eqeq1d 2742 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1)) |
3 | eqid 2740 | . . . . 5 ⊢ 1 = 1 | |
4 | 3 | biantru 529 | . . . 4 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 1 = 1)) |
5 | ax-1ne0 11253 | . . . . . 6 ⊢ 1 ≠ 0 | |
6 | 5 | neii 2948 | . . . . 5 ⊢ ¬ 1 = 0 |
7 | 6 | biorfri 938 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0)) |
8 | 6 | bianfi 533 | . . . . 5 ⊢ (1 = 0 ↔ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0)) |
9 | 8 | orbi2i 911 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
10 | 4, 7, 9 | 3bitri 297 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
11 | eqif 4589 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) | |
12 | eqcom 2747 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1) | |
13 | 10, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (if(𝑋 ∈ 𝐴, 1, 0) = 1 ↔ 𝑋 ∈ 𝐴) |
14 | 2, 13 | bitrdi 287 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ifcif 4548 ‘cfv 6573 0cc0 11184 1c1 11185 𝟭cind 33974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-ind 33975 |
This theorem is referenced by: indpi1 33984 prodindf 33987 indpreima 33989 |
Copyright terms: Public domain | W3C validator |