Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1a Structured version   Visualization version   GIF version

Theorem ind1a 33482
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
ind1a ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))

Proof of Theorem ind1a
StepHypRef Expression
1 indfval 33479 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
21eqeq1d 2733 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋𝐴, 1, 0) = 1))
3 eqid 2731 . . . . 5 1 = 1
43biantru 529 . . . 4 (𝑋𝐴 ↔ (𝑋𝐴 ∧ 1 = 1))
5 ax-1ne0 11185 . . . . . 6 1 ≠ 0
65neii 2941 . . . . 5 ¬ 1 = 0
76biorfi 936 . . . 4 ((𝑋𝐴 ∧ 1 = 1) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0))
86bianfi 533 . . . . 5 (1 = 0 ↔ (¬ 𝑋𝐴 ∧ 1 = 0))
98orbi2i 910 . . . 4 (((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
104, 7, 93bitri 297 . . 3 (𝑋𝐴 ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
11 eqif 4569 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
12 eqcom 2738 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ if(𝑋𝐴, 1, 0) = 1)
1310, 11, 123bitr2ri 300 . 2 (if(𝑋𝐴, 1, 0) = 1 ↔ 𝑋𝐴)
142, 13bitrdi 287 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  wss 3948  ifcif 4528  cfv 6543  0cc0 11116  1c1 11117  𝟭cind 33473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-i2m1 11184  ax-1ne0 11185  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-ind 33474
This theorem is referenced by:  indpi1  33483  prodindf  33486  indpreima  33488
  Copyright terms: Public domain W3C validator