![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ind1a | Structured version Visualization version GIF version |
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.) |
Ref | Expression |
---|---|
ind1a | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indfval 33310 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
2 | 1 | eqeq1d 2732 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1)) |
3 | eqid 2730 | . . . . 5 ⊢ 1 = 1 | |
4 | 3 | biantru 528 | . . . 4 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 1 = 1)) |
5 | ax-1ne0 11183 | . . . . . 6 ⊢ 1 ≠ 0 | |
6 | 5 | neii 2940 | . . . . 5 ⊢ ¬ 1 = 0 |
7 | 6 | biorfi 935 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0)) |
8 | 6 | bianfi 532 | . . . . 5 ⊢ (1 = 0 ↔ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0)) |
9 | 8 | orbi2i 909 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
10 | 4, 7, 9 | 3bitri 296 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) |
11 | eqif 4570 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) | |
12 | eqcom 2737 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1) | |
13 | 10, 11, 12 | 3bitr2ri 299 | . 2 ⊢ (if(𝑋 ∈ 𝐴, 1, 0) = 1 ↔ 𝑋 ∈ 𝐴) |
14 | 2, 13 | bitrdi 286 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ⊆ wss 3949 ifcif 4529 ‘cfv 6544 0cc0 11114 1c1 11115 𝟭cind 33304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-i2m1 11182 ax-1ne0 11183 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-ind 33305 |
This theorem is referenced by: indpi1 33314 prodindf 33317 indpreima 33319 |
Copyright terms: Public domain | W3C validator |