Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ind1a Structured version   Visualization version   GIF version

Theorem ind1a 32841
Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.)
Assertion
Ref Expression
ind1a ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))

Proof of Theorem ind1a
StepHypRef Expression
1 indfval 32838 . . 3 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
21eqeq1d 2738 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋𝐴, 1, 0) = 1))
3 eqid 2736 . . . . 5 1 = 1
43biantru 529 . . . 4 (𝑋𝐴 ↔ (𝑋𝐴 ∧ 1 = 1))
5 ax-1ne0 11203 . . . . . 6 1 ≠ 0
65neii 2935 . . . . 5 ¬ 1 = 0
76biorfri 939 . . . 4 ((𝑋𝐴 ∧ 1 = 1) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0))
86bianfi 533 . . . . 5 (1 = 0 ↔ (¬ 𝑋𝐴 ∧ 1 = 0))
98orbi2i 912 . . . 4 (((𝑋𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
104, 7, 93bitri 297 . . 3 (𝑋𝐴 ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
11 eqif 4547 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ ((𝑋𝐴 ∧ 1 = 1) ∨ (¬ 𝑋𝐴 ∧ 1 = 0)))
12 eqcom 2743 . . 3 (1 = if(𝑋𝐴, 1, 0) ↔ if(𝑋𝐴, 1, 0) = 1)
1310, 11, 123bitr2ri 300 . 2 (if(𝑋𝐴, 1, 0) = 1 ↔ 𝑋𝐴)
142, 13bitrdi 287 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3931  ifcif 4505  cfv 6536  0cc0 11134  1c1 11135  𝟭cind 32832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-i2m1 11202  ax-1ne0 11203  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-ind 32833
This theorem is referenced by:  indpi1  32842  prodindf  32845  indpreima  32847
  Copyright terms: Public domain W3C validator