|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ind1a | Structured version Visualization version GIF version | ||
| Description: Value of the indicator function where it is 1. (Contributed by Thierry Arnoux, 22-Aug-2017.) | 
| Ref | Expression | 
|---|---|
| ind1a | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indfval 32841 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) | |
| 2 | 1 | eqeq1d 2739 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1)) | 
| 3 | eqid 2737 | . . . . 5 ⊢ 1 = 1 | |
| 4 | 3 | biantru 529 | . . . 4 ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐴 ∧ 1 = 1)) | 
| 5 | ax-1ne0 11224 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 6 | 5 | neii 2942 | . . . . 5 ⊢ ¬ 1 = 0 | 
| 7 | 6 | biorfri 940 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0)) | 
| 8 | 6 | bianfi 533 | . . . . 5 ⊢ (1 = 0 ↔ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0)) | 
| 9 | 8 | orbi2i 913 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ 1 = 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) | 
| 10 | 4, 7, 9 | 3bitri 297 | . . 3 ⊢ (𝑋 ∈ 𝐴 ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) | 
| 11 | eqif 4567 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ ((𝑋 ∈ 𝐴 ∧ 1 = 1) ∨ (¬ 𝑋 ∈ 𝐴 ∧ 1 = 0))) | |
| 12 | eqcom 2744 | . . 3 ⊢ (1 = if(𝑋 ∈ 𝐴, 1, 0) ↔ if(𝑋 ∈ 𝐴, 1, 0) = 1) | |
| 13 | 10, 11, 12 | 3bitr2ri 300 | . 2 ⊢ (if(𝑋 ∈ 𝐴, 1, 0) = 1 ↔ 𝑋 ∈ 𝐴) | 
| 14 | 2, 13 | bitrdi 287 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑋) = 1 ↔ 𝑋 ∈ 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ifcif 4525 ‘cfv 6561 0cc0 11155 1c1 11156 𝟭cind 32835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-i2m1 11223 ax-1ne0 11224 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-ind 32836 | 
| This theorem is referenced by: indpi1 32845 prodindf 32848 indpreima 32850 | 
| Copyright terms: Public domain | W3C validator |