| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorfri | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| biorfi.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| biorfri | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | biorfi 938 | . 2 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
| 3 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm4.43 1024 dn1 1057 un0 4374 opthprc 5723 imadif 6625 frxp2 8148 xrsupss 13330 mdegleb 26026 difrab2 32484 ind1a 32841 poimirlem30 37679 ifpdfan2 43462 ifpdfan 43465 ifpnot 43469 ifpid2 43470 uneqsn 44024 usgrexmpl2nb1 48016 usgrexmpl2nb2 48017 usgrexmpl2nb4 48019 |
| Copyright terms: Public domain | W3C validator |