MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfri Structured version   Visualization version   GIF version

Theorem biorfri 938
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfri (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfri
StepHypRef Expression
1 biorfi.1 . . 3 ¬ 𝜑
21biorfi 937 . 2 (𝜓 ↔ (𝜑𝜓))
3 orcom 869 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
42, 3bitri 275 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  pm4.43  1023  dn1  1058  un0  4417  opthprc  5764  imadif  6662  frxp2  8185  xrsupss  13371  mdegleb  26123  difrab2  32526  ind1a  33983  poimirlem30  37610  ifpdfan2  43425  ifpdfan  43428  ifpnot  43432  ifpid2  43433  uneqsn  43987  usgrexmpl2nb1  47847  usgrexmpl2nb2  47848  usgrexmpl2nb4  47850
  Copyright terms: Public domain W3C validator