| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorfri | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| biorfi.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| biorfri | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | biorfi 938 | . 2 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
| 3 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm4.43 1024 dn1 1057 un0 4357 opthprc 5702 imadif 6600 frxp2 8123 xrsupss 13269 mdegleb 25969 difrab2 32427 ind1a 32782 poimirlem30 37644 ifpdfan2 43452 ifpdfan 43455 ifpnot 43459 ifpid2 43460 uneqsn 44014 usgrexmpl2nb1 48023 usgrexmpl2nb2 48024 usgrexmpl2nb4 48026 |
| Copyright terms: Public domain | W3C validator |