![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfri | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfri | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | 1 | biorfi 937 | . 2 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
3 | orcom 869 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: pm4.43 1023 dn1 1058 un0 4417 opthprc 5764 imadif 6662 frxp2 8185 xrsupss 13371 mdegleb 26123 difrab2 32526 ind1a 33983 poimirlem30 37610 ifpdfan2 43425 ifpdfan 43428 ifpnot 43432 ifpid2 43433 uneqsn 43987 usgrexmpl2nb1 47847 usgrexmpl2nb2 47848 usgrexmpl2nb4 47850 |
Copyright terms: Public domain | W3C validator |