MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfri Structured version   Visualization version   GIF version

Theorem biorfri 939
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfri (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfri
StepHypRef Expression
1 biorfi.1 . . 3 ¬ 𝜑
21biorfi 938 . 2 (𝜓 ↔ (𝜑𝜓))
3 orcom 870 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
42, 3bitri 275 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.43  1024  dn1  1057  un0  4376  opthprc  5731  imadif  6631  frxp2  8152  xrsupss  13334  mdegleb  26058  difrab2  32464  ind1a  32791  poimirlem30  37598  ifpdfan2  43421  ifpdfan  43424  ifpnot  43428  ifpid2  43429  uneqsn  43983  usgrexmpl2nb1  47937  usgrexmpl2nb2  47938  usgrexmpl2nb4  47940
  Copyright terms: Public domain W3C validator