MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfri Structured version   Visualization version   GIF version

Theorem biorfri 939
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfri (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfri
StepHypRef Expression
1 biorfi.1 . . 3 ¬ 𝜑
21biorfi 938 . 2 (𝜓 ↔ (𝜑𝜓))
3 orcom 870 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
42, 3bitri 275 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.43  1024  dn1  1057  un0  4357  opthprc  5702  imadif  6600  frxp2  8123  xrsupss  13269  mdegleb  25969  difrab2  32427  ind1a  32782  poimirlem30  37644  ifpdfan2  43452  ifpdfan  43455  ifpnot  43459  ifpid2  43460  uneqsn  44014  usgrexmpl2nb1  48023  usgrexmpl2nb2  48024  usgrexmpl2nb4  48026
  Copyright terms: Public domain W3C validator