| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorfri | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| biorfi.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| biorfri | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | biorfi 938 | . 2 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
| 3 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm4.43 1024 dn1 1057 un0 4344 opthprc 5680 imadif 6565 frxp2 8074 xrsupss 13205 mdegleb 25994 difrab2 32472 ind1a 32835 poimirlem30 37689 ifpdfan2 43495 ifpdfan 43498 ifpnot 43502 ifpid2 43503 uneqsn 44057 usgrexmpl2nb1 48062 usgrexmpl2nb2 48063 usgrexmpl2nb4 48065 |
| Copyright terms: Public domain | W3C validator |