MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfri Structured version   Visualization version   GIF version

Theorem biorfri 939
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfri (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfri
StepHypRef Expression
1 biorfi.1 . . 3 ¬ 𝜑
21biorfi 938 . 2 (𝜓 ↔ (𝜑𝜓))
3 orcom 870 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
42, 3bitri 275 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.43  1024  dn1  1057  un0  4344  opthprc  5680  imadif  6565  frxp2  8074  xrsupss  13205  mdegleb  25994  difrab2  32472  ind1a  32835  poimirlem30  37689  ifpdfan2  43495  ifpdfan  43498  ifpnot  43502  ifpid2  43503  uneqsn  44057  usgrexmpl2nb1  48062  usgrexmpl2nb2  48063  usgrexmpl2nb4  48065
  Copyright terms: Public domain W3C validator