| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biorfri | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| biorfi.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| biorfri | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
| 2 | 1 | biorfi 938 | . 2 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
| 3 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm4.43 1024 dn1 1057 un0 4347 opthprc 5687 imadif 6570 frxp2 8084 xrsupss 13229 mdegleb 25985 difrab2 32460 ind1a 32815 poimirlem30 37629 ifpdfan2 43436 ifpdfan 43439 ifpnot 43443 ifpid2 43444 uneqsn 43998 usgrexmpl2nb1 48017 usgrexmpl2nb2 48018 usgrexmpl2nb4 48020 |
| Copyright terms: Public domain | W3C validator |