![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfri | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfri | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | 1 | biorfi 937 | . 2 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
3 | orcom 869 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 |
This theorem is referenced by: pm4.43 1023 dn1 1058 indifdirOLD 4309 un0 4413 opthprc 5763 imadif 6661 frxp2 8181 xrsupss 13367 mdegleb 26115 difrab2 32517 ind1a 33975 poimirlem30 37559 ifpdfan2 43366 ifpdfan 43369 ifpnot 43373 ifpid2 43374 uneqsn 43928 usgrexmpl2nb1 47767 usgrexmpl2nb2 47768 usgrexmpl2nb4 47770 |
Copyright terms: Public domain | W3C validator |