MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biorfri Structured version   Visualization version   GIF version

Theorem biorfri 939
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.)
Hypothesis
Ref Expression
biorfi.1 ¬ 𝜑
Assertion
Ref Expression
biorfri (𝜓 ↔ (𝜓𝜑))

Proof of Theorem biorfri
StepHypRef Expression
1 biorfi.1 . . 3 ¬ 𝜑
21biorfi 938 . 2 (𝜓 ↔ (𝜑𝜓))
3 orcom 870 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
42, 3bitri 275 1 (𝜓 ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.43  1024  dn1  1057  un0  4374  opthprc  5723  imadif  6625  frxp2  8148  xrsupss  13330  mdegleb  26026  difrab2  32484  ind1a  32841  poimirlem30  37679  ifpdfan2  43462  ifpdfan  43465  ifpnot  43469  ifpid2  43470  uneqsn  44024  usgrexmpl2nb1  48016  usgrexmpl2nb2  48017  usgrexmpl2nb4  48019
  Copyright terms: Public domain W3C validator