![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biorfri | Structured version Visualization version GIF version |
Description: A wff is equivalent to its disjunction with falsehood. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 16-Jul-2021.) (Proof shortened by AV, 10-Aug-2025.) |
Ref | Expression |
---|---|
biorfi.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
biorfri | ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorfi.1 | . . 3 ⊢ ¬ 𝜑 | |
2 | 1 | biorfi 938 | . 2 ⊢ (𝜓 ↔ (𝜑 ∨ 𝜓)) |
3 | orcom 870 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝜓 ↔ (𝜓 ∨ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 |
This theorem is referenced by: pm4.43 1024 dn1 1057 un0 4401 opthprc 5754 imadif 6655 frxp2 8174 xrsupss 13354 mdegleb 26126 difrab2 32539 ind1a 34013 poimirlem30 37649 ifpdfan2 43467 ifpdfan 43470 ifpnot 43474 ifpid2 43475 uneqsn 44029 usgrexmpl2nb1 47940 usgrexmpl2nb2 47941 usgrexmpl2nb4 47943 |
Copyright terms: Public domain | W3C validator |