| Step | Hyp | Ref
| Expression |
| 1 | | 4re 12333 |
. . . . . . 7
⊢ 4 ∈
ℝ |
| 2 | 1 | elexi 3487 |
. . . . . 6
⊢ 4 ∈
V |
| 3 | 2 | tpid2 4752 |
. . . . 5
⊢ 4 ∈
{3, 4, 5} |
| 4 | 3 | olci 866 |
. . . 4
⊢ (4 ∈
{0, 1, 2} ∨ 4 ∈ {3, 4, 5}) |
| 5 | | elun 4135 |
. . . 4
⊢ (4 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (4 ∈ {0, 1, 2} ∨ 4 ∈ {3, 4,
5})) |
| 6 | 4, 5 | mpbir 231 |
. . 3
⊢ 4 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 7 | | usgrexmpl2.v |
. . . 4
⊢ 𝑉 = (0...5) |
| 8 | | usgrexmpl2.e |
. . . 4
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 9 | | usgrexmpl2.g |
. . . 4
⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| 10 | 7, 8, 9 | usgrexmpl2nblem 47935 |
. . 3
⊢ (4 ∈
({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 4) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣
{4, 𝑛} ∈ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))}) |
| 11 | 6, 10 | ax-mp 5 |
. 2
⊢ (𝐺 NeighbVtx 4) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {4, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))} |
| 12 | | 3ex 12331 |
. . . . . 6
⊢ 3 ∈
V |
| 13 | 12 | tpid1 4750 |
. . . . 5
⊢ 3 ∈
{3, 4, 5} |
| 14 | 13 | olci 866 |
. . . 4
⊢ (3 ∈
{0, 1, 2} ∨ 3 ∈ {3, 4, 5}) |
| 15 | | elun 4135 |
. . . 4
⊢ (3 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (3 ∈ {0, 1, 2} ∨ 3 ∈ {3, 4,
5})) |
| 16 | 14, 15 | mpbir 231 |
. . 3
⊢ 3 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 17 | | 5re 12336 |
. . . . . . 7
⊢ 5 ∈
ℝ |
| 18 | 17 | elexi 3487 |
. . . . . 6
⊢ 5 ∈
V |
| 19 | 18 | tpid3 4755 |
. . . . 5
⊢ 5 ∈
{3, 4, 5} |
| 20 | 19 | olci 866 |
. . . 4
⊢ (5 ∈
{0, 1, 2} ∨ 5 ∈ {3, 4, 5}) |
| 21 | | elun 4135 |
. . . 4
⊢ (5 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (5 ∈ {0, 1, 2} ∨ 5 ∈ {3, 4,
5})) |
| 22 | 20, 21 | mpbir 231 |
. . 3
⊢ 5 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 23 | | prssi 4803 |
. . . . 5
⊢ ((3
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {3, 5} ⊆ ({0, 1, 2} ∪ {3, 4, 5})) |
| 24 | | vex 3468 |
. . . . . . . . . . . . . . 15
⊢ 𝑛 ∈ V |
| 25 | 1, 24 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (4 ∈
ℝ ∧ 𝑛 ∈
V) |
| 26 | | c0ex 11238 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
| 27 | 26, 17 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
V ∧ 5 ∈ ℝ) |
| 28 | 25, 27 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 5 ∈ ℝ)) |
| 29 | | 4ne0 12357 |
. . . . . . . . . . . . . . 15
⊢ 4 ≠
0 |
| 30 | | 4lt5 12426 |
. . . . . . . . . . . . . . . 16
⊢ 4 <
5 |
| 31 | 1, 30 | ltneii 11357 |
. . . . . . . . . . . . . . 15
⊢ 4 ≠
5 |
| 32 | 29, 31 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (4 ≠ 0
∧ 4 ≠ 5) |
| 33 | 32 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((4 ≠
0 ∧ 4 ≠ 5) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
5)) |
| 34 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 5 ∈ ℝ)) → (((4 ≠ 0 ∧ 4
≠ 5) ∨ (𝑛 ≠ 0
∧ 𝑛 ≠ 5)) → {4,
𝑛} ≠ {0,
5})) |
| 35 | 28, 33, 34 | mp2 9 |
. . . . . . . . . . . 12
⊢ {4, 𝑛} ≠ {0, 5} |
| 36 | 35 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{4, 𝑛} = {0,
5} |
| 37 | 36 | biorfri 939 |
. . . . . . . . . 10
⊢ (({4,
𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5}) ↔ (({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5}) ∨ {4, 𝑛} = {0, 5})) |
| 38 | | prcom 4714 |
. . . . . . . . . . . . . 14
⊢ {3, 4} =
{4, 3} |
| 39 | 38 | eqeq2i 2747 |
. . . . . . . . . . . . 13
⊢ ({4,
𝑛} = {3, 4} ↔ {4,
𝑛} = {4,
3}) |
| 40 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (3 ∈
V → 𝑛 ∈
V) |
| 41 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (3 ∈
V → 3 ∈ V) |
| 42 | 40, 41 | preq2b 4829 |
. . . . . . . . . . . . . 14
⊢ (3 ∈
V → ({4, 𝑛} = {4, 3}
↔ 𝑛 =
3)) |
| 43 | 12, 42 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ({4,
𝑛} = {4, 3} ↔ 𝑛 = 3) |
| 44 | 39, 43 | bitri 275 |
. . . . . . . . . . . 12
⊢ ({4,
𝑛} = {3, 4} ↔ 𝑛 = 3) |
| 45 | 44 | bicomi 224 |
. . . . . . . . . . 11
⊢ (𝑛 = 3 ↔ {4, 𝑛} = {3, 4}) |
| 46 | 24 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (5 ∈
ℝ → 𝑛 ∈
V) |
| 47 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (5 ∈
ℝ → 5 ∈ ℝ) |
| 48 | 46, 47 | preq2b 4829 |
. . . . . . . . . . . . 13
⊢ (5 ∈
ℝ → ({4, 𝑛} =
{4, 5} ↔ 𝑛 =
5)) |
| 49 | 17, 48 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ({4,
𝑛} = {4, 5} ↔ 𝑛 = 5) |
| 50 | 49 | bicomi 224 |
. . . . . . . . . . 11
⊢ (𝑛 = 5 ↔ {4, 𝑛} = {4, 5}) |
| 51 | 45, 50 | orbi12i 914 |
. . . . . . . . . 10
⊢ ((𝑛 = 3 ∨ 𝑛 = 5) ↔ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5})) |
| 52 | | df-3or 1087 |
. . . . . . . . . 10
⊢ (({4,
𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5}) ↔ (({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5}) ∨ {4, 𝑛} = {0, 5})) |
| 53 | 37, 51, 52 | 3bitr4i 303 |
. . . . . . . . 9
⊢ ((𝑛 = 3 ∨ 𝑛 = 5) ↔ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5})) |
| 54 | 2, 24 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (4 ∈
V ∧ 𝑛 ∈
V) |
| 55 | | 1re 11244 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 56 | 26, 55 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
V ∧ 1 ∈ ℝ) |
| 57 | 54, 56 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((4
∈ V ∧ 𝑛 ∈ V)
∧ (0 ∈ V ∧ 1 ∈ ℝ)) |
| 58 | | 1lt4 12425 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
4 |
| 59 | 55, 58 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 4 ≠
1 |
| 60 | 29, 59 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (4 ≠ 0
∧ 4 ≠ 1) |
| 61 | 60 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((4 ≠
0 ∧ 4 ≠ 1) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
1)) |
| 62 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((4
∈ V ∧ 𝑛 ∈ V)
∧ (0 ∈ V ∧ 1 ∈ ℝ)) → (((4 ≠ 0 ∧ 4 ≠ 1)
∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 1)) → {4, 𝑛} ≠ {0, 1})) |
| 63 | 57, 61, 62 | mp2 9 |
. . . . . . . . . . . 12
⊢ {4, 𝑛} ≠ {0, 1} |
| 64 | 63 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{4, 𝑛} = {0,
1} |
| 65 | | 2re 12323 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
| 66 | 55, 65 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ ∧ 2 ∈ ℝ) |
| 67 | 25, 66 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ ℝ)) |
| 68 | | 2lt4 12424 |
. . . . . . . . . . . . . . . 16
⊢ 2 <
4 |
| 69 | 65, 68 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 4 ≠
2 |
| 70 | 59, 69 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (4 ≠ 1
∧ 4 ≠ 2) |
| 71 | 70 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((4 ≠
1 ∧ 4 ≠ 2) ∨ (𝑛
≠ 1 ∧ 𝑛 ≠
2)) |
| 72 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (1 ∈ ℝ ∧ 2 ∈ ℝ)) → (((4 ≠ 1
∧ 4 ≠ 2) ∨ (𝑛
≠ 1 ∧ 𝑛 ≠ 2))
→ {4, 𝑛} ≠ {1,
2})) |
| 73 | 67, 71, 72 | mp2 9 |
. . . . . . . . . . . 12
⊢ {4, 𝑛} ≠ {1, 2} |
| 74 | 73 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{4, 𝑛} = {1,
2} |
| 75 | 65, 12 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℝ ∧ 3 ∈ V) |
| 76 | 25, 75 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ ((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (2 ∈ ℝ ∧ 3 ∈ V)) |
| 77 | | 3re 12329 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ |
| 78 | | 3lt4 12423 |
. . . . . . . . . . . . . . . 16
⊢ 3 <
4 |
| 79 | 77, 78 | gtneii 11356 |
. . . . . . . . . . . . . . 15
⊢ 4 ≠
3 |
| 80 | 69, 79 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (4 ≠ 2
∧ 4 ≠ 3) |
| 81 | 80 | orci 865 |
. . . . . . . . . . . . 13
⊢ ((4 ≠
2 ∧ 4 ≠ 3) ∨ (𝑛
≠ 2 ∧ 𝑛 ≠
3)) |
| 82 | | prneimg 4836 |
. . . . . . . . . . . . 13
⊢ (((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (2 ∈ ℝ ∧ 3 ∈ V)) → (((4 ≠ 2 ∧ 4
≠ 3) ∨ (𝑛 ≠ 2
∧ 𝑛 ≠ 3)) → {4,
𝑛} ≠ {2,
3})) |
| 83 | 76, 81, 82 | mp2 9 |
. . . . . . . . . . . 12
⊢ {4, 𝑛} ≠ {2, 3} |
| 84 | 83 | neii 2933 |
. . . . . . . . . . 11
⊢ ¬
{4, 𝑛} = {2,
3} |
| 85 | 64, 74, 84 | 3pm3.2ni 1489 |
. . . . . . . . . 10
⊢ ¬
({4, 𝑛} = {0, 1} ∨ {4,
𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) |
| 86 | 85 | biorfi 938 |
. . . . . . . . 9
⊢ (({4,
𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5}) ↔ (({4, 𝑛} = {0, 1} ∨ {4, 𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) ∨ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5}))) |
| 87 | 53, 86 | bitri 275 |
. . . . . . . 8
⊢ ((𝑛 = 3 ∨ 𝑛 = 5) ↔ (({4, 𝑛} = {0, 1} ∨ {4, 𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) ∨ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5}))) |
| 88 | 26, 12 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (0 ∈
V ∧ 3 ∈ V) |
| 89 | 25, 88 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ ((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 3 ∈ V)) |
| 90 | 29, 79 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (4 ≠ 0
∧ 4 ≠ 3) |
| 91 | 90 | orci 865 |
. . . . . . . . . . 11
⊢ ((4 ≠
0 ∧ 4 ≠ 3) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
3)) |
| 92 | | prneimg 4836 |
. . . . . . . . . . 11
⊢ (((4
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 3 ∈ V)) → (((4 ≠ 0 ∧ 4 ≠
3) ∨ (𝑛 ≠ 0 ∧
𝑛 ≠ 3)) → {4, 𝑛} ≠ {0, 3})) |
| 93 | 89, 91, 92 | mp2 9 |
. . . . . . . . . 10
⊢ {4, 𝑛} ≠ {0, 3} |
| 94 | 93 | neii 2933 |
. . . . . . . . 9
⊢ ¬
{4, 𝑛} = {0,
3} |
| 95 | 94 | biorfi 938 |
. . . . . . . 8
⊢ ((({4,
𝑛} = {0, 1} ∨ {4, 𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) ∨ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5})) ↔ ({4, 𝑛} = {0, 3} ∨ (({4, 𝑛} = {0, 1} ∨ {4, 𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) ∨ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5})))) |
| 96 | 87, 95 | bitri 275 |
. . . . . . 7
⊢ ((𝑛 = 3 ∨ 𝑛 = 5) ↔ ({4, 𝑛} = {0, 3} ∨ (({4, 𝑛} = {0, 1} ∨ {4, 𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) ∨ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5})))) |
| 97 | 24 | elpr 4632 |
. . . . . . 7
⊢ (𝑛 ∈ {3, 5} ↔ (𝑛 = 3 ∨ 𝑛 = 5)) |
| 98 | | prex 5419 |
. . . . . . . 8
⊢ {4, 𝑛} ∈ V |
| 99 | | el7g 4672 |
. . . . . . . 8
⊢ ({4,
𝑛} ∈ V → ({4,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({4, 𝑛} = {0, 3} ∨ (({4, 𝑛} = {0, 1} ∨ {4, 𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) ∨ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5}))))) |
| 100 | 98, 99 | ax-mp 5 |
. . . . . . 7
⊢ ({4,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({4, 𝑛} = {0, 3} ∨ (({4, 𝑛} = {0, 1} ∨ {4, 𝑛} = {1, 2} ∨ {4, 𝑛} = {2, 3}) ∨ ({4, 𝑛} = {3, 4} ∨ {4, 𝑛} = {4, 5} ∨ {4, 𝑛} = {0, 5})))) |
| 101 | 96, 97, 100 | 3bitr4i 303 |
. . . . . 6
⊢ (𝑛 ∈ {3, 5} ↔ {4, 𝑛} ∈ ({{0, 3}} ∪ ({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) |
| 102 | 101 | a1i 11 |
. . . . 5
⊢ (((3
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
∧ 𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5})) → (𝑛
∈ {3, 5} ↔ {4, 𝑛}
∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}})))) |
| 103 | 23, 102 | eqrrabd 4068 |
. . . 4
⊢ ((3
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {3, 5} = {𝑛 ∈
({0, 1, 2} ∪ {3, 4, 5}) ∣ {4, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) |
| 104 | 103 | eqcomd 2740 |
. . 3
⊢ ((3
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 5 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5}) ∣ {4, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} = {3, 5}) |
| 105 | 16, 22, 104 | mp2an 692 |
. 2
⊢ {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {4, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} =
{3, 5} |
| 106 | 11, 105 | eqtri 2757 |
1
⊢ (𝐺 NeighbVtx 4) = {3,
5} |