| Step | Hyp | Ref
| Expression |
| 1 | | 1ex 11240 |
. . . . . 6
⊢ 1 ∈
V |
| 2 | 1 | tpid2 4752 |
. . . . 5
⊢ 1 ∈
{0, 1, 2} |
| 3 | 2 | orci 865 |
. . . 4
⊢ (1 ∈
{0, 1, 2} ∨ 1 ∈ {3, 4, 5}) |
| 4 | | elun 4135 |
. . . 4
⊢ (1 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (1 ∈ {0, 1, 2} ∨ 1 ∈ {3, 4,
5})) |
| 5 | 3, 4 | mpbir 231 |
. . 3
⊢ 1 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 6 | | usgrexmpl2.v |
. . . 4
⊢ 𝑉 = (0...5) |
| 7 | | usgrexmpl2.e |
. . . 4
⊢ 𝐸 = 〈“{0, 1} {1, 2}
{2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| 8 | | usgrexmpl2.g |
. . . 4
⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| 9 | 6, 7, 8 | usgrexmpl2nblem 47935 |
. . 3
⊢ (1 ∈
({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 1) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣
{1, 𝑛} ∈ ({{0, 3}}
∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))}) |
| 10 | 5, 9 | ax-mp 5 |
. 2
⊢ (𝐺 NeighbVtx 1) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {1, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}}))} |
| 11 | | c0ex 11238 |
. . . . . 6
⊢ 0 ∈
V |
| 12 | 11 | tpid1 4750 |
. . . . 5
⊢ 0 ∈
{0, 1, 2} |
| 13 | 12 | orci 865 |
. . . 4
⊢ (0 ∈
{0, 1, 2} ∨ 0 ∈ {3, 4, 5}) |
| 14 | | elun 4135 |
. . . 4
⊢ (0 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (0 ∈ {0, 1, 2} ∨ 0 ∈ {3, 4,
5})) |
| 15 | 13, 14 | mpbir 231 |
. . 3
⊢ 0 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 16 | | 2ex 12326 |
. . . . . 6
⊢ 2 ∈
V |
| 17 | 16 | tpid3 4755 |
. . . . 5
⊢ 2 ∈
{0, 1, 2} |
| 18 | 17 | orci 865 |
. . . 4
⊢ (2 ∈
{0, 1, 2} ∨ 2 ∈ {3, 4, 5}) |
| 19 | | elun 4135 |
. . . 4
⊢ (2 ∈
({0, 1, 2} ∪ {3, 4, 5}) ↔ (2 ∈ {0, 1, 2} ∨ 2 ∈ {3, 4,
5})) |
| 20 | 18, 19 | mpbir 231 |
. . 3
⊢ 2 ∈
({0, 1, 2} ∪ {3, 4, 5}) |
| 21 | | prssi 4803 |
. . . . 5
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {0, 2} ⊆ ({0, 1, 2} ∪ {3, 4, 5})) |
| 22 | | 1re 11244 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
| 23 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑛 ∈ V |
| 24 | 22, 23 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℝ ∧ 𝑛 ∈
V) |
| 25 | | 3ex 12331 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
V |
| 26 | 16, 25 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (2 ∈
V ∧ 3 ∈ V) |
| 27 | 24, 26 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (2 ∈ V ∧ 3 ∈ V)) |
| 28 | | 1ne2 12457 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
2 |
| 29 | | 1lt3 12422 |
. . . . . . . . . . . . . . 15
⊢ 1 <
3 |
| 30 | 22, 29 | ltneii 11357 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
3 |
| 31 | 28, 30 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (1 ≠ 2
∧ 1 ≠ 3) |
| 32 | 31 | orci 865 |
. . . . . . . . . . . 12
⊢ ((1 ≠
2 ∧ 1 ≠ 3) ∨ (𝑛
≠ 2 ∧ 𝑛 ≠
3)) |
| 33 | | prneimg 4836 |
. . . . . . . . . . . 12
⊢ (((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (2 ∈ V ∧ 3 ∈ V)) → (((1 ≠ 2 ∧ 1 ≠
3) ∨ (𝑛 ≠ 2 ∧
𝑛 ≠ 3)) → {1, 𝑛} ≠ {2, 3})) |
| 34 | 27, 32, 33 | mp2 9 |
. . . . . . . . . . 11
⊢ {1, 𝑛} ≠ {2, 3} |
| 35 | 34 | neii 2933 |
. . . . . . . . . 10
⊢ ¬
{1, 𝑛} = {2,
3} |
| 36 | 35 | biorfri 939 |
. . . . . . . . 9
⊢ (({1,
𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2}) ↔ (({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2}) ∨ {1, 𝑛} = {2, 3})) |
| 37 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (0 ∈
V → 𝑛 ∈
V) |
| 38 | | elex 3485 |
. . . . . . . . . . . . 13
⊢ (0 ∈
V → 0 ∈ V) |
| 39 | 37, 38 | preq2b 4829 |
. . . . . . . . . . . 12
⊢ (0 ∈
V → ({1, 𝑛} = {1, 0}
↔ 𝑛 =
0)) |
| 40 | 11, 39 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({1,
𝑛} = {1, 0} ↔ 𝑛 = 0) |
| 41 | | prcom 4714 |
. . . . . . . . . . . 12
⊢ {1, 0} =
{0, 1} |
| 42 | 41 | eqeq2i 2747 |
. . . . . . . . . . 11
⊢ ({1,
𝑛} = {1, 0} ↔ {1,
𝑛} = {0,
1}) |
| 43 | 40, 42 | bitr3i 277 |
. . . . . . . . . 10
⊢ (𝑛 = 0 ↔ {1, 𝑛} = {0, 1}) |
| 44 | 23 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (2 ∈
V → 𝑛 ∈
V) |
| 45 | | elex 3485 |
. . . . . . . . . . . . 13
⊢ (2 ∈
V → 2 ∈ V) |
| 46 | 44, 45 | preq2b 4829 |
. . . . . . . . . . . 12
⊢ (2 ∈
V → ({1, 𝑛} = {1, 2}
↔ 𝑛 =
2)) |
| 47 | 46 | bicomd 223 |
. . . . . . . . . . 11
⊢ (2 ∈
V → (𝑛 = 2 ↔ {1,
𝑛} = {1,
2})) |
| 48 | 16, 47 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑛 = 2 ↔ {1, 𝑛} = {1, 2}) |
| 49 | 43, 48 | orbi12i 914 |
. . . . . . . . 9
⊢ ((𝑛 = 0 ∨ 𝑛 = 2) ↔ ({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2})) |
| 50 | | df-3or 1087 |
. . . . . . . . 9
⊢ (({1,
𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ↔ (({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2}) ∨ {1, 𝑛} = {2, 3})) |
| 51 | 36, 49, 50 | 3bitr4i 303 |
. . . . . . . 8
⊢ ((𝑛 = 0 ∨ 𝑛 = 2) ↔ ({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3})) |
| 52 | | 4nn0 12529 |
. . . . . . . . . . . . . 14
⊢ 4 ∈
ℕ0 |
| 53 | 25, 52 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (3 ∈
V ∧ 4 ∈ ℕ0) |
| 54 | 24, 53 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (3 ∈ V ∧ 4 ∈
ℕ0)) |
| 55 | | 1lt4 12425 |
. . . . . . . . . . . . . . 15
⊢ 1 <
4 |
| 56 | 22, 55 | ltneii 11357 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
4 |
| 57 | 30, 56 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (1 ≠ 3
∧ 1 ≠ 4) |
| 58 | 57 | orci 865 |
. . . . . . . . . . . 12
⊢ ((1 ≠
3 ∧ 1 ≠ 4) ∨ (𝑛
≠ 3 ∧ 𝑛 ≠
4)) |
| 59 | | prneimg 4836 |
. . . . . . . . . . . 12
⊢ (((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (3 ∈ V ∧ 4 ∈ ℕ0)) → (((1
≠ 3 ∧ 1 ≠ 4) ∨ (𝑛 ≠ 3 ∧ 𝑛 ≠ 4)) → {1, 𝑛} ≠ {3, 4})) |
| 60 | 54, 58, 59 | mp2 9 |
. . . . . . . . . . 11
⊢ {1, 𝑛} ≠ {3, 4} |
| 61 | 60 | neii 2933 |
. . . . . . . . . 10
⊢ ¬
{1, 𝑛} = {3,
4} |
| 62 | | 5nn0 12530 |
. . . . . . . . . . . . . 14
⊢ 5 ∈
ℕ0 |
| 63 | 52, 62 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (4 ∈
ℕ0 ∧ 5 ∈ ℕ0) |
| 64 | 24, 63 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈
ℕ0)) |
| 65 | | 1lt5 12429 |
. . . . . . . . . . . . . . 15
⊢ 1 <
5 |
| 66 | 22, 65 | ltneii 11357 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
5 |
| 67 | 56, 66 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (1 ≠ 4
∧ 1 ≠ 5) |
| 68 | 67 | orci 865 |
. . . . . . . . . . . 12
⊢ ((1 ≠
4 ∧ 1 ≠ 5) ∨ (𝑛
≠ 4 ∧ 𝑛 ≠
5)) |
| 69 | | prneimg 4836 |
. . . . . . . . . . . 12
⊢ (((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (4 ∈ ℕ0 ∧ 5 ∈
ℕ0)) → (((1 ≠ 4 ∧ 1 ≠ 5) ∨ (𝑛 ≠ 4 ∧ 𝑛 ≠ 5)) → {1, 𝑛} ≠ {4, 5})) |
| 70 | 64, 68, 69 | mp2 9 |
. . . . . . . . . . 11
⊢ {1, 𝑛} ≠ {4, 5} |
| 71 | 70 | neii 2933 |
. . . . . . . . . 10
⊢ ¬
{1, 𝑛} = {4,
5} |
| 72 | 11, 62 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (0 ∈
V ∧ 5 ∈ ℕ0) |
| 73 | 24, 72 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 5 ∈
ℕ0)) |
| 74 | | ax-1ne0 11207 |
. . . . . . . . . . . . . 14
⊢ 1 ≠
0 |
| 75 | 74, 66 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (1 ≠ 0
∧ 1 ≠ 5) |
| 76 | 75 | orci 865 |
. . . . . . . . . . . 12
⊢ ((1 ≠
0 ∧ 1 ≠ 5) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
5)) |
| 77 | | prneimg 4836 |
. . . . . . . . . . . 12
⊢ (((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 5 ∈ ℕ0)) → (((1
≠ 0 ∧ 1 ≠ 5) ∨ (𝑛 ≠ 0 ∧ 𝑛 ≠ 5)) → {1, 𝑛} ≠ {0, 5})) |
| 78 | 73, 76, 77 | mp2 9 |
. . . . . . . . . . 11
⊢ {1, 𝑛} ≠ {0, 5} |
| 79 | 78 | neii 2933 |
. . . . . . . . . 10
⊢ ¬
{1, 𝑛} = {0,
5} |
| 80 | 61, 71, 79 | 3pm3.2ni 1489 |
. . . . . . . . 9
⊢ ¬
({1, 𝑛} = {3, 4} ∨ {1,
𝑛} = {4, 5} ∨ {1, 𝑛} = {0, 5}) |
| 81 | 80 | biorfri 939 |
. . . . . . . 8
⊢ (({1,
𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ↔ (({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ∨ ({1, 𝑛} = {3, 4} ∨ {1, 𝑛} = {4, 5} ∨ {1, 𝑛} = {0, 5}))) |
| 82 | 11, 25 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (0 ∈
V ∧ 3 ∈ V) |
| 83 | 24, 82 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 3 ∈ V)) |
| 84 | 74, 30 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (1 ≠ 0
∧ 1 ≠ 3) |
| 85 | 84 | orci 865 |
. . . . . . . . . . 11
⊢ ((1 ≠
0 ∧ 1 ≠ 3) ∨ (𝑛
≠ 0 ∧ 𝑛 ≠
3)) |
| 86 | | prneimg 4836 |
. . . . . . . . . . 11
⊢ (((1
∈ ℝ ∧ 𝑛
∈ V) ∧ (0 ∈ V ∧ 3 ∈ V)) → (((1 ≠ 0 ∧ 1 ≠
3) ∨ (𝑛 ≠ 0 ∧
𝑛 ≠ 3)) → {1, 𝑛} ≠ {0, 3})) |
| 87 | 83, 85, 86 | mp2 9 |
. . . . . . . . . 10
⊢ {1, 𝑛} ≠ {0, 3} |
| 88 | 87 | neii 2933 |
. . . . . . . . 9
⊢ ¬
{1, 𝑛} = {0,
3} |
| 89 | 88 | biorfi 938 |
. . . . . . . 8
⊢ ((({1,
𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ∨ ({1, 𝑛} = {3, 4} ∨ {1, 𝑛} = {4, 5} ∨ {1, 𝑛} = {0, 5})) ↔ ({1, 𝑛} = {0, 3} ∨ (({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ∨ ({1, 𝑛} = {3, 4} ∨ {1, 𝑛} = {4, 5} ∨ {1, 𝑛} = {0, 5})))) |
| 90 | 51, 81, 89 | 3bitri 297 |
. . . . . . 7
⊢ ((𝑛 = 0 ∨ 𝑛 = 2) ↔ ({1, 𝑛} = {0, 3} ∨ (({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ∨ ({1, 𝑛} = {3, 4} ∨ {1, 𝑛} = {4, 5} ∨ {1, 𝑛} = {0, 5})))) |
| 91 | 23 | elpr 4632 |
. . . . . . 7
⊢ (𝑛 ∈ {0, 2} ↔ (𝑛 = 0 ∨ 𝑛 = 2)) |
| 92 | | prex 5419 |
. . . . . . . 8
⊢ {1, 𝑛} ∈ V |
| 93 | | el7g 4672 |
. . . . . . . 8
⊢ ({1,
𝑛} ∈ V → ({1,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({1, 𝑛} = {0, 3} ∨ (({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ∨ ({1, 𝑛} = {3, 4} ∨ {1, 𝑛} = {4, 5} ∨ {1, 𝑛} = {0, 5}))))) |
| 94 | 92, 93 | ax-mp 5 |
. . . . . . 7
⊢ ({1,
𝑛} ∈ ({{0, 3}} ∪
({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) ↔ ({1, 𝑛} = {0, 3} ∨ (({1, 𝑛} = {0, 1} ∨ {1, 𝑛} = {1, 2} ∨ {1, 𝑛} = {2, 3}) ∨ ({1, 𝑛} = {3, 4} ∨ {1, 𝑛} = {4, 5} ∨ {1, 𝑛} = {0, 5})))) |
| 95 | 90, 91, 94 | 3bitr4i 303 |
. . . . . 6
⊢ (𝑛 ∈ {0, 2} ↔ {1, 𝑛} ∈ ({{0, 3}} ∪ ({{0,
1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))) |
| 96 | 95 | a1i 11 |
. . . . 5
⊢ (((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
∧ 𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5})) → (𝑛
∈ {0, 2} ↔ {1, 𝑛}
∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0,
5}})))) |
| 97 | 21, 96 | eqrrabd 4068 |
. . . 4
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {0, 2} = {𝑛 ∈
({0, 1, 2} ∪ {3, 4, 5}) ∣ {1, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) |
| 98 | 97 | eqcomd 2740 |
. . 3
⊢ ((0
∈ ({0, 1, 2} ∪ {3, 4, 5}) ∧ 2 ∈ ({0, 1, 2} ∪ {3, 4, 5}))
→ {𝑛 ∈ ({0, 1, 2}
∪ {3, 4, 5}) ∣ {1, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2},
{2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} = {0, 2}) |
| 99 | 15, 20, 98 | mp2an 692 |
. 2
⊢ {𝑛 ∈ ({0, 1, 2} ∪ {3, 4,
5}) ∣ {1, 𝑛} ∈
({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))} =
{0, 2} |
| 100 | 10, 99 | eqtri 2757 |
1
⊢ (𝐺 NeighbVtx 1) = {0,
2} |