Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rdg0gALT | Structured version Visualization version GIF version |
Description: Alternate proof of rdg0g 8250. More direct since it bypasses tz7.44-1 8229 and rdg0 8244 (and vtoclg 3504, vtoclga 3512). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-rdg0gALT | ⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgdmlim 8240 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
2 | limomss 7712 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
4 | peano1 7730 | . . . 4 ⊢ ∅ ∈ ω | |
5 | 3, 4 | sselii 3923 | . . 3 ⊢ ∅ ∈ dom rec(𝐹, 𝐴) |
6 | rdgvalg 8242 | . . 3 ⊢ (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) |
8 | res0 5894 | . . . 4 ⊢ (rec(𝐹, 𝐴) ↾ ∅) = ∅ | |
9 | 8 | fveq2i 6774 | . . 3 ⊢ ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘∅) |
10 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
11 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = ∅) → 𝑥 = ∅) | |
12 | 11 | iftrued 4473 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = ∅) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))) = 𝐴) |
13 | 0ex 5235 | . . . . 5 ⊢ ∅ ∈ V | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
15 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
16 | 10, 12, 14, 15 | fvmptd2 6880 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘∅) = 𝐴) |
17 | 9, 16 | eqtrid 2792 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = 𝐴) |
18 | 7, 17 | eqtrid 2792 | 1 ⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 ∅c0 4262 ifcif 4465 ∪ cuni 4845 ↦ cmpt 5162 dom cdm 5590 ran crn 5591 ↾ cres 5592 Lim wlim 6266 ‘cfv 6432 ωcom 7707 reccrdg 8232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-om 7708 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |