Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rdg0gALT Structured version   Visualization version   GIF version

Theorem bj-rdg0gALT 35251
Description: Alternate proof of rdg0g 8250. More direct since it bypasses tz7.44-1 8229 and rdg0 8244 (and vtoclg 3504, vtoclga 3512). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rdg0gALT (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem bj-rdg0gALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 8240 . . . . 5 Lim dom rec(𝐹, 𝐴)
2 limomss 7712 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
4 peano1 7730 . . . 4 ∅ ∈ ω
53, 4sselii 3923 . . 3 ∅ ∈ dom rec(𝐹, 𝐴)
6 rdgvalg 8242 . . 3 (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)))
75, 6ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅))
8 res0 5894 . . . 4 (rec(𝐹, 𝐴) ↾ ∅) = ∅
98fveq2i 6774 . . 3 ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅)
10 eqid 2740 . . . 4 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
11 simpr 485 . . . . 5 ((𝐴𝑉𝑥 = ∅) → 𝑥 = ∅)
1211iftrued 4473 . . . 4 ((𝐴𝑉𝑥 = ∅) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))) = 𝐴)
13 0ex 5235 . . . . 5 ∅ ∈ V
1413a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
15 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
1610, 12, 14, 15fvmptd2 6880 . . 3 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅) = 𝐴)
179, 16eqtrid 2792 . 2 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = 𝐴)
187, 17eqtrid 2792 1 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  Vcvv 3431  wss 3892  c0 4262  ifcif 4465   cuni 4845  cmpt 5162  dom cdm 5590  ran crn 5591  cres 5592  Lim wlim 6266  cfv 6432  ωcom 7707  reccrdg 8232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator