Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rdg0gALT Structured version   Visualization version   GIF version

Theorem bj-rdg0gALT 35145
Description: Alternate proof of rdg0g 8205. More direct since it bypasses tz7.44-1 8184 and rdg0 8199 (and vtoclg 3496, vtoclga 3504). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rdg0gALT (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem bj-rdg0gALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 8195 . . . . 5 Lim dom rec(𝐹, 𝐴)
2 limomss 7689 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
4 peano1 7707 . . . 4 ∅ ∈ ω
53, 4sselii 3915 . . 3 ∅ ∈ dom rec(𝐹, 𝐴)
6 rdgvalg 8197 . . 3 (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)))
75, 6ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅))
8 res0 5883 . . . 4 (rec(𝐹, 𝐴) ↾ ∅) = ∅
98fveq2i 6756 . . 3 ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅)
10 eqid 2739 . . . 4 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
11 simpr 488 . . . . 5 ((𝐴𝑉𝑥 = ∅) → 𝑥 = ∅)
1211iftrued 4464 . . . 4 ((𝐴𝑉𝑥 = ∅) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))) = 𝐴)
13 0ex 5224 . . . . 5 ∅ ∈ V
1413a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
15 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
1610, 12, 14, 15fvmptd2 6862 . . 3 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅) = 𝐴)
179, 16syl5eq 2792 . 2 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = 𝐴)
187, 17syl5eq 2792 1 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3423  wss 3884  c0 4254  ifcif 4456   cuni 4836  cmpt 5152  dom cdm 5579  ran crn 5580  cres 5581  Lim wlim 6249  cfv 6415  ωcom 7684  reccrdg 8187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-om 7685  df-wrecs 8089  df-recs 8150  df-rdg 8188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator