Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rdg0gALT Structured version   Visualization version   GIF version

Theorem bj-rdg0gALT 37094
Description: Alternate proof of rdg0g 8446. More direct since it bypasses tz7.44-1 8425 and rdg0 8440 (and vtoclg 3538, vtoclga 3561). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rdg0gALT (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem bj-rdg0gALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 8436 . . . . 5 Lim dom rec(𝐹, 𝐴)
2 limomss 7871 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
4 peano1 7889 . . . 4 ∅ ∈ ω
53, 4sselii 3960 . . 3 ∅ ∈ dom rec(𝐹, 𝐴)
6 rdgvalg 8438 . . 3 (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)))
75, 6ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅))
8 res0 5975 . . . 4 (rec(𝐹, 𝐴) ↾ ∅) = ∅
98fveq2i 6884 . . 3 ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅)
10 eqid 2736 . . . 4 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
11 simpr 484 . . . . 5 ((𝐴𝑉𝑥 = ∅) → 𝑥 = ∅)
1211iftrued 4513 . . . 4 ((𝐴𝑉𝑥 = ∅) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))) = 𝐴)
13 0ex 5282 . . . . 5 ∅ ∈ V
1413a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
15 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
1610, 12, 14, 15fvmptd2 6999 . . 3 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅) = 𝐴)
179, 16eqtrid 2783 . 2 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = 𝐴)
187, 17eqtrid 2783 1 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  c0 4313  ifcif 4505   cuni 4888  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  Lim wlim 6358  cfv 6536  ωcom 7866  reccrdg 8428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator