![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rdg0gALT | Structured version Visualization version GIF version |
Description: Alternate proof of rdg0g 8431. More direct since it bypasses tz7.44-1 8410 and rdg0 8425 (and vtoclg 3542, vtoclga 3566). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-rdg0gALT | ⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgdmlim 8421 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
2 | limomss 7864 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
4 | peano1 7883 | . . . 4 ⊢ ∅ ∈ ω | |
5 | 3, 4 | sselii 3979 | . . 3 ⊢ ∅ ∈ dom rec(𝐹, 𝐴) |
6 | rdgvalg 8423 | . . 3 ⊢ (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) |
8 | res0 5985 | . . . 4 ⊢ (rec(𝐹, 𝐴) ↾ ∅) = ∅ | |
9 | 8 | fveq2i 6894 | . . 3 ⊢ ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘∅) |
10 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥))))) | |
11 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = ∅) → 𝑥 = ∅) | |
12 | 11 | iftrued 4536 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = ∅) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))) = 𝐴) |
13 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
15 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
16 | 10, 12, 14, 15 | fvmptd2 7006 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘∅) = 𝐴) |
17 | 9, 16 | eqtrid 2783 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ∪ ran 𝑥, (𝐹‘(𝑥‘∪ dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = 𝐴) |
18 | 7, 17 | eqtrid 2783 | 1 ⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 ∅c0 4322 ifcif 4528 ∪ cuni 4908 ↦ cmpt 5231 dom cdm 5676 ran crn 5677 ↾ cres 5678 Lim wlim 6365 ‘cfv 6543 ωcom 7859 reccrdg 8413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |