Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rdg0gALT Structured version   Visualization version   GIF version

Theorem bj-rdg0gALT 37138
Description: Alternate proof of rdg0g 8354. More direct since it bypasses tz7.44-1 8333 and rdg0 8348 (and vtoclg 3508, vtoclga 3529). (Contributed by NM, 25-Apr-1995.) More direct proof. (Revised by BJ, 17-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-rdg0gALT (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem bj-rdg0gALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgdmlim 8344 . . . . 5 Lim dom rec(𝐹, 𝐴)
2 limomss 7809 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
31, 2ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
4 peano1 7827 . . . 4 ∅ ∈ ω
53, 4sselii 3927 . . 3 ∅ ∈ dom rec(𝐹, 𝐴)
6 rdgvalg 8346 . . 3 (∅ ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)))
75, 6ax-mp 5 . 2 (rec(𝐹, 𝐴)‘∅) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅))
8 res0 5938 . . . 4 (rec(𝐹, 𝐴) ↾ ∅) = ∅
98fveq2i 6833 . . 3 ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅)
10 eqid 2733 . . . 4 (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥))))) = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))
11 simpr 484 . . . . 5 ((𝐴𝑉𝑥 = ∅) → 𝑥 = ∅)
1211iftrued 4484 . . . 4 ((𝐴𝑉𝑥 = ∅) → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))) = 𝐴)
13 0ex 5249 . . . . 5 ∅ ∈ V
1413a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
15 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
1610, 12, 14, 15fvmptd2 6945 . . 3 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘∅) = 𝐴)
179, 16eqtrid 2780 . 2 (𝐴𝑉 → ((𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐹‘(𝑥 dom 𝑥)))))‘(rec(𝐹, 𝐴) ↾ ∅)) = 𝐴)
187, 17eqtrid 2780 1 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898  c0 4282  ifcif 4476   cuni 4860  cmpt 5176  dom cdm 5621  ran crn 5622  cres 5623  Lim wlim 6314  cfv 6488  ωcom 7804  reccrdg 8336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator