Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version |
Description: Deduction form of equcom 2030, symmetry of equality. For the versions for classes, see eqcom 2745 and eqcomd 2744. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
2 | equcom 2030 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 |
This theorem is referenced by: sndisj 5021 fsumcom2 15222 fprodcom2 15430 catideu 17049 pospo 17699 dprdfcntz 19256 ordtt1 22130 eengtrkg 26932 cusgrfilem2 27398 frgr2wwlk1 28266 ssmxidl 31214 gonar 32928 bj-nfcsym 34728 exidu1 35657 rngoideu 35704 2reu8i 44158 ichnreuop 44478 sprsymrelf1lem 44497 |
Copyright terms: Public domain | W3C validator |