MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2019
Description: Deduction form of equcom 2018, symmetry of equality. For the versions for classes, see eqcom 2736 and eqcomd 2735. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2018 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 218 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  sndisj  5087  fsumcom2  15699  fprodcom2  15909  catideu  17599  pospo  18267  dprdfcntz  19914  ordtt1  23282  eengtrkg  28949  cusgrfilem2  29420  frgr2wwlk1  30291  ssmxidl  33421  gonar  35367  bj-nfcsym  36872  exidu1  37835  rngoideu  37882  2reu8i  47098  ichnreuop  47457  sprsymrelf1lem  47476  oppcthinendcALT  49427
  Copyright terms: Public domain W3C validator