![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version |
Description: Deduction form of equcom 2017, symmetry of equality. For the versions for classes, see eqcom 2747 and eqcomd 2746. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
2 | equcom 2017 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: sndisj 5158 fsumcom2 15822 fprodcom2 16032 catideu 17733 pospo 18415 dprdfcntz 20059 ordtt1 23408 eengtrkg 29019 cusgrfilem2 29492 frgr2wwlk1 30361 ssmxidl 33467 gonar 35363 bj-nfcsym 36865 exidu1 37816 rngoideu 37863 2reu8i 47028 ichnreuop 47346 sprsymrelf1lem 47365 |
Copyright terms: Public domain | W3C validator |