| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version | ||
| Description: Deduction form of equcom 2019, symmetry of equality. For the versions for classes, see eqcom 2740 and eqcomd 2739. (Contributed by BJ, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
| 2 | equcom 2019 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: sndisj 5087 fsumcom2 15685 fprodcom2 15895 catideu 17585 pospo 18253 dprdfcntz 19933 ordtt1 23297 eengtrkg 28968 cusgrfilem2 29439 frgr2wwlk1 30313 ssmxidl 33448 gonar 35462 bj-nfcsym 36966 exidu1 37919 rngoideu 37966 2reu8i 47240 ichnreuop 47599 sprsymrelf1lem 47618 oppcthinendcALT 49569 |
| Copyright terms: Public domain | W3C validator |