MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2014
Description: Deduction form of equcom 2013, symmetry of equality. For the versions for classes, see eqcom 2731 and eqcomd 2730. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2013 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 217 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774
This theorem is referenced by:  sndisj  5129  fsumcom2  15716  fprodcom2  15924  catideu  17615  pospo  18297  dprdfcntz  19922  ordtt1  23193  eengtrkg  28668  cusgrfilem2  29137  frgr2wwlk1  30006  ssmxidl  33021  gonar  34841  bj-nfcsym  36235  exidu1  37180  rngoideu  37227  2reu8i  46272  ichnreuop  46591  sprsymrelf1lem  46610
  Copyright terms: Public domain W3C validator