MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2023
Description: Deduction form of equcom 2022, symmetry of equality. For the versions for classes, see eqcom 2745 and eqcomd 2744. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2022 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 217 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  sndisj  5061  fsumcom2  15414  fprodcom2  15622  catideu  17301  pospo  17978  dprdfcntz  19533  ordtt1  22438  eengtrkg  27257  cusgrfilem2  27726  frgr2wwlk1  28594  ssmxidl  31544  gonar  33257  bj-nfcsym  35011  exidu1  35941  rngoideu  35988  2reu8i  44492  ichnreuop  44812  sprsymrelf1lem  44831
  Copyright terms: Public domain W3C validator