MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2017
Description: Deduction form of equcom 2016, symmetry of equality. For the versions for classes, see eqcom 2741 and eqcomd 2740. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2016 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 218 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779
This theorem is referenced by:  sndisj  5115  fsumcom2  15793  fprodcom2  16003  catideu  17690  pospo  18360  dprdfcntz  20004  ordtt1  23334  eengtrkg  28932  cusgrfilem2  29403  frgr2wwlk1  30277  ssmxidl  33442  gonar  35375  bj-nfcsym  36875  exidu1  37838  rngoideu  37885  2reu8i  47098  ichnreuop  47432  sprsymrelf1lem  47451  oppcthinendcALT  49142
  Copyright terms: Public domain W3C validator