| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version | ||
| Description: Deduction form of equcom 2018, symmetry of equality. For the versions for classes, see eqcom 2736 and eqcomd 2735. (Contributed by BJ, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
| 2 | equcom 2018 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sndisj 5099 fsumcom2 15740 fprodcom2 15950 catideu 17636 pospo 18304 dprdfcntz 19947 ordtt1 23266 eengtrkg 28913 cusgrfilem2 29384 frgr2wwlk1 30258 ssmxidl 33445 gonar 35382 bj-nfcsym 36887 exidu1 37850 rngoideu 37897 2reu8i 47114 ichnreuop 47473 sprsymrelf1lem 47492 oppcthinendcALT 49430 |
| Copyright terms: Public domain | W3C validator |