![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version |
Description: Deduction form of equcom 2013, symmetry of equality. For the versions for classes, see eqcom 2731 and eqcomd 2730. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
2 | equcom 2013 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 |
This theorem is referenced by: sndisj 5129 fsumcom2 15716 fprodcom2 15924 catideu 17615 pospo 18297 dprdfcntz 19922 ordtt1 23193 eengtrkg 28668 cusgrfilem2 29137 frgr2wwlk1 30006 ssmxidl 33021 gonar 34841 bj-nfcsym 36235 exidu1 37180 rngoideu 37227 2reu8i 46272 ichnreuop 46591 sprsymrelf1lem 46610 |
Copyright terms: Public domain | W3C validator |