MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2019
Description: Deduction form of equcom 2018, symmetry of equality. For the versions for classes, see eqcom 2737 and eqcomd 2736. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2018 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 218 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  sndisj  5102  fsumcom2  15747  fprodcom2  15957  catideu  17643  pospo  18311  dprdfcntz  19954  ordtt1  23273  eengtrkg  28920  cusgrfilem2  29391  frgr2wwlk1  30265  ssmxidl  33452  gonar  35389  bj-nfcsym  36894  exidu1  37857  rngoideu  37904  2reu8i  47118  ichnreuop  47477  sprsymrelf1lem  47496  oppcthinendcALT  49434
  Copyright terms: Public domain W3C validator