Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version |
Description: Deduction form of equcom 2021, symmetry of equality. For the versions for classes, see eqcom 2745 and eqcomd 2744. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
2 | equcom 2021 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: sndisj 5065 fsumcom2 15486 fprodcom2 15694 catideu 17384 pospo 18063 dprdfcntz 19618 ordtt1 22530 eengtrkg 27354 cusgrfilem2 27823 frgr2wwlk1 28693 ssmxidl 31642 gonar 33357 bj-nfcsym 35084 exidu1 36014 rngoideu 36061 2reu8i 44605 ichnreuop 44924 sprsymrelf1lem 44943 |
Copyright terms: Public domain | W3C validator |