Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version |
Description: Deduction form of equcom 2022, symmetry of equality. For the versions for classes, see eqcom 2745 and eqcomd 2744. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
Ref | Expression |
---|---|
equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
2 | equcom 2022 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: sndisj 5061 fsumcom2 15414 fprodcom2 15622 catideu 17301 pospo 17978 dprdfcntz 19533 ordtt1 22438 eengtrkg 27257 cusgrfilem2 27726 frgr2wwlk1 28594 ssmxidl 31544 gonar 33257 bj-nfcsym 35011 exidu1 35941 rngoideu 35988 2reu8i 44492 ichnreuop 44812 sprsymrelf1lem 44831 |
Copyright terms: Public domain | W3C validator |