MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2018
Description: Deduction form of equcom 2017, symmetry of equality. For the versions for classes, see eqcom 2747 and eqcomd 2746. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2017 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 218 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  sndisj  5158  fsumcom2  15822  fprodcom2  16032  catideu  17733  pospo  18415  dprdfcntz  20059  ordtt1  23408  eengtrkg  29019  cusgrfilem2  29492  frgr2wwlk1  30361  ssmxidl  33467  gonar  35363  bj-nfcsym  36865  exidu1  37816  rngoideu  37863  2reu8i  47028  ichnreuop  47346  sprsymrelf1lem  47365
  Copyright terms: Public domain W3C validator