MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2020
Description: Deduction form of equcom 2019, symmetry of equality. For the versions for classes, see eqcom 2740 and eqcomd 2739. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2019 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 218 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  sndisj  5087  fsumcom2  15685  fprodcom2  15895  catideu  17585  pospo  18253  dprdfcntz  19933  ordtt1  23297  eengtrkg  28968  cusgrfilem2  29439  frgr2wwlk1  30313  ssmxidl  33448  gonar  35462  bj-nfcsym  36966  exidu1  37919  rngoideu  37966  2reu8i  47240  ichnreuop  47599  sprsymrelf1lem  47618  oppcthinendcALT  49569
  Copyright terms: Public domain W3C validator