| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcomd | Structured version Visualization version GIF version | ||
| Description: Deduction form of equcom 2019, symmetry of equality. For the versions for classes, see eqcom 2738 and eqcomd 2737. (Contributed by BJ, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| equcomd.1 | ⊢ (𝜑 → 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| equcomd | ⊢ (𝜑 → 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomd.1 | . 2 ⊢ (𝜑 → 𝑥 = 𝑦) | |
| 2 | equcom 2019 | . 2 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: sndisj 5083 fsumcom2 15681 fprodcom2 15891 catideu 17581 pospo 18249 dprdfcntz 19930 ordtt1 23295 eengtrkg 28965 cusgrfilem2 29436 frgr2wwlk1 30307 ssmxidl 33437 gonar 35437 bj-nfcsym 36939 exidu1 37902 rngoideu 37949 2reu8i 47150 ichnreuop 47509 sprsymrelf1lem 47528 oppcthinendcALT 49479 |
| Copyright terms: Public domain | W3C validator |