MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equcomd Structured version   Visualization version   GIF version

Theorem equcomd 2016
Description: Deduction form of equcom 2015, symmetry of equality. For the versions for classes, see eqcom 2742 and eqcomd 2741. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
equcomd.1 (𝜑𝑥 = 𝑦)
Assertion
Ref Expression
equcomd (𝜑𝑦 = 𝑥)

Proof of Theorem equcomd
StepHypRef Expression
1 equcomd.1 . 2 (𝜑𝑥 = 𝑦)
2 equcom 2015 . 2 (𝑥 = 𝑦𝑦 = 𝑥)
31, 2sylib 218 1 (𝜑𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777
This theorem is referenced by:  sndisj  5140  fsumcom2  15807  fprodcom2  16017  catideu  17720  pospo  18403  dprdfcntz  20050  ordtt1  23403  eengtrkg  29016  cusgrfilem2  29489  frgr2wwlk1  30358  ssmxidl  33482  gonar  35380  bj-nfcsym  36882  exidu1  37843  rngoideu  37890  2reu8i  47063  ichnreuop  47397  sprsymrelf1lem  47416
  Copyright terms: Public domain W3C validator