Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelopabid Structured version   Visualization version   GIF version

Theorem bj-opelopabid 37242
Description: Membership in an ordered-pair class abstraction. One can remove the DV condition on 𝑥, 𝑦 by using opabid 5470 in place of opabidw 5469. (Contributed by BJ, 22-May-2024.)
Assertion
Ref Expression
bj-opelopabid (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-opelopabid
StepHypRef Expression
1 df-br 5096 . 2 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 opabidw 5469 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
31, 2bitri 275 1 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  cop 4583   class class class wbr 5095  {copab 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158
This theorem is referenced by:  bj-opabco  37243
  Copyright terms: Public domain W3C validator