Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelopabid Structured version   Visualization version   GIF version

Theorem bj-opelopabid 36558
Description: Membership in an ordered-pair class abstraction. One can remove the DV condition on 𝑥, 𝑦 by using opabid 5515 in place of opabidw 5514. (Contributed by BJ, 22-May-2024.)
Assertion
Ref Expression
bj-opelopabid (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-opelopabid
StepHypRef Expression
1 df-br 5139 . 2 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2 opabidw 5514 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
31, 2bitri 275 1 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  cop 4626   class class class wbr 5138  {copab 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201
This theorem is referenced by:  bj-opabco  36559
  Copyright terms: Public domain W3C validator