Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirid | Structured version Visualization version GIF version |
Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.) |
Ref | Expression |
---|---|
bj-imdirid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
bj-imdirid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | idssxp 5945 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
4 | 1, 1, 3 | bj-imdirval2 35281 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)}) |
5 | resiima 5973 | . . . . 5 ⊢ (𝑥 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑥) = 𝑥) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (( I ↾ 𝐴) “ 𝑥) = 𝑥) |
7 | 6 | eqeq1d 2740 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → ((( I ↾ 𝐴) “ 𝑥) = 𝑦 ↔ 𝑥 = 𝑦)) |
8 | 7 | bj-imdiridlem 35283 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)} = ( I ↾ 𝒫 𝐴) |
9 | 4, 8 | eqtrdi 2795 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 𝒫 cpw 4530 {copab 5132 I cid 5479 × cxp 5578 ↾ cres 5582 “ cima 5583 ‘cfv 6418 (class class class)co 7255 𝒫*cimdir 35276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-imdir 35277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |