| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirid | Structured version Visualization version GIF version | ||
| Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.) |
| Ref | Expression |
|---|---|
| bj-imdirid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| bj-imdirid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-imdirid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | idssxp 6066 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
| 4 | 1, 1, 3 | bj-imdirval2 37185 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)}) |
| 5 | resiima 6093 | . . . . 5 ⊢ (𝑥 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑥) = 𝑥) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (( I ↾ 𝐴) “ 𝑥) = 𝑥) |
| 7 | 6 | eqeq1d 2738 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → ((( I ↾ 𝐴) “ 𝑥) = 𝑦 ↔ 𝑥 = 𝑦)) |
| 8 | 7 | bj-imdiridlem 37187 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)} = ( I ↾ 𝒫 𝐴) |
| 9 | 4, 8 | eqtrdi 2792 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 𝒫 cpw 4599 {copab 5204 I cid 5576 × cxp 5682 ↾ cres 5686 “ cima 5687 ‘cfv 6560 (class class class)co 7432 𝒫*cimdir 37180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-imdir 37181 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |