Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirid Structured version   Visualization version   GIF version

Theorem bj-imdirid 34478
Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.)
Hypothesis
Ref Expression
bj-imdirid.ex (𝜑𝐴𝑈)
Assertion
Ref Expression
bj-imdirid (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))

Proof of Theorem bj-imdirid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-imdirid.ex . . 3 (𝜑𝐴𝑈)
2 idssxp 5916 . . . 4 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
32a1i 11 . . 3 (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
41, 1, 3bj-imdirval2 34476 . 2 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)})
5 resiima 5944 . . . . . . . 8 (𝑥𝐴 → (( I ↾ 𝐴) “ 𝑥) = 𝑥)
65ad2antrl 726 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (( I ↾ 𝐴) “ 𝑥) = 𝑥)
76eqeq1d 2823 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((( I ↾ 𝐴) “ 𝑥) = 𝑦𝑥 = 𝑦))
87pm5.32da 581 . . . . 5 (𝜑 → (((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑥 = 𝑦)))
9 anass 471 . . . . 5 (((𝑥𝐴𝑦𝐴) ∧ 𝑥 = 𝑦) ↔ (𝑥𝐴 ∧ (𝑦𝐴𝑥 = 𝑦)))
108, 9syl6bb 289 . . . 4 (𝜑 → (((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦) ↔ (𝑥𝐴 ∧ (𝑦𝐴𝑥 = 𝑦))))
11 simpr 487 . . . . . . . 8 ((𝑦𝐴𝑥 = 𝑦) → 𝑥 = 𝑦)
12 sseq1 3992 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1312biimpcd 251 . . . . . . . . 9 (𝑥𝐴 → (𝑥 = 𝑦𝑦𝐴))
1413ancrd 554 . . . . . . . 8 (𝑥𝐴 → (𝑥 = 𝑦 → (𝑦𝐴𝑥 = 𝑦)))
1511, 14impbid2 228 . . . . . . 7 (𝑥𝐴 → ((𝑦𝐴𝑥 = 𝑦) ↔ 𝑥 = 𝑦))
1615pm5.32i 577 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐴𝑥 = 𝑦)) ↔ (𝑥𝐴𝑥 = 𝑦))
1716a1i 11 . . . . 5 (𝜑 → ((𝑥𝐴 ∧ (𝑦𝐴𝑥 = 𝑦)) ↔ (𝑥𝐴𝑥 = 𝑦)))
18 velpw 4544 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
19 vex 3497 . . . . . . 7 𝑦 ∈ V
2019ideq 5723 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
2118, 20anbi12i 628 . . . . 5 ((𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦) ↔ (𝑥𝐴𝑥 = 𝑦))
2217, 21syl6bbr 291 . . . 4 (𝜑 → ((𝑥𝐴 ∧ (𝑦𝐴𝑥 = 𝑦)) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)))
2310, 22bitrd 281 . . 3 (𝜑 → (((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)))
2423opabbidv 5132 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)})
25 dfres2 5909 . . 3 ( I ↾ 𝒫 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)}
26 eqidd 2822 . . 3 (𝜑 → ( I ↾ 𝒫 𝐴) = ( I ↾ 𝒫 𝐴))
2725, 26syl5eqr 2870 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐴𝑥 I 𝑦)} = ( I ↾ 𝒫 𝐴))
284, 24, 273eqtrd 2860 1 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936  𝒫 cpw 4539   class class class wbr 5066  {copab 5128   I cid 5459   × cxp 5553  cres 5557  cima 5558  cfv 6355  (class class class)co 7156  𝒫*cimdir 34473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-imdir 34474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator