Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirid Structured version   Visualization version   GIF version

Theorem bj-imdirid 36655
Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.)
Hypothesis
Ref Expression
bj-imdirid.ex (𝜑𝐴𝑈)
Assertion
Ref Expression
bj-imdirid (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))

Proof of Theorem bj-imdirid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-imdirid.ex . . 3 (𝜑𝐴𝑈)
2 idssxp 6046 . . . 4 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
32a1i 11 . . 3 (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
41, 1, 3bj-imdirval2 36652 . 2 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)})
5 resiima 6073 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴) “ 𝑥) = 𝑥)
65adantr 480 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴) “ 𝑥) = 𝑥)
76eqeq1d 2729 . . 3 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴) “ 𝑥) = 𝑦𝑥 = 𝑦))
87bj-imdiridlem 36654 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)} = ( I ↾ 𝒫 𝐴)
94, 8eqtrdi 2783 1 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wss 3944  𝒫 cpw 4598  {copab 5204   I cid 5569   × cxp 5670  cres 5674  cima 5675  cfv 6542  (class class class)co 7414  𝒫*cimdir 36647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-imdir 36648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator