Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirid | Structured version Visualization version GIF version |
Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.) |
Ref | Expression |
---|---|
bj-imdirid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
bj-imdirid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | idssxp 5916 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
4 | 1, 1, 3 | bj-imdirval2 35089 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)}) |
5 | resiima 5944 | . . . . 5 ⊢ (𝑥 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑥) = 𝑥) | |
6 | 5 | adantr 484 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (( I ↾ 𝐴) “ 𝑥) = 𝑥) |
7 | 6 | eqeq1d 2739 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → ((( I ↾ 𝐴) “ 𝑥) = 𝑦 ↔ 𝑥 = 𝑦)) |
8 | 7 | bj-imdiridlem 35091 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)} = ( I ↾ 𝒫 𝐴) |
9 | 4, 8 | eqtrdi 2794 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 𝒫 cpw 4513 {copab 5115 I cid 5454 × cxp 5549 ↾ cres 5553 “ cima 5554 ‘cfv 6380 (class class class)co 7213 𝒫*cimdir 35084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-imdir 35085 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |