![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-imdirid | Structured version Visualization version GIF version |
Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.) |
Ref | Expression |
---|---|
bj-imdirid.ex | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
bj-imdirid | ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-imdirid.ex | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | idssxp 6046 | . . . 4 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) |
4 | 1, 1, 3 | bj-imdirval2 36652 | . 2 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)}) |
5 | resiima 6073 | . . . . 5 ⊢ (𝑥 ⊆ 𝐴 → (( I ↾ 𝐴) “ 𝑥) = 𝑥) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → (( I ↾ 𝐴) “ 𝑥) = 𝑥) |
7 | 6 | eqeq1d 2729 | . . 3 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) → ((( I ↾ 𝐴) “ 𝑥) = 𝑦 ↔ 𝑥 = 𝑦)) |
8 | 7 | bj-imdiridlem 36654 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)} = ( I ↾ 𝒫 𝐴) |
9 | 4, 8 | eqtrdi 2783 | 1 ⊢ (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 𝒫 cpw 4598 {copab 5204 I cid 5569 × cxp 5670 ↾ cres 5674 “ cima 5675 ‘cfv 6542 (class class class)co 7414 𝒫*cimdir 36647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-imdir 36648 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |