Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirid Structured version   Visualization version   GIF version

Theorem bj-imdirid 37303
Description: Functorial property of the direct image: the direct image by the identity on a set is the identity on the powerset. (Contributed by BJ, 24-Dec-2023.)
Hypothesis
Ref Expression
bj-imdirid.ex (𝜑𝐴𝑈)
Assertion
Ref Expression
bj-imdirid (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))

Proof of Theorem bj-imdirid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-imdirid.ex . . 3 (𝜑𝐴𝑈)
2 idssxp 6005 . . . 4 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
32a1i 11 . . 3 (𝜑 → ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
41, 1, 3bj-imdirval2 37300 . 2 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)})
5 resiima 6032 . . . . 5 (𝑥𝐴 → (( I ↾ 𝐴) “ 𝑥) = 𝑥)
65adantr 480 . . . 4 ((𝑥𝐴𝑦𝐴) → (( I ↾ 𝐴) “ 𝑥) = 𝑥)
76eqeq1d 2735 . . 3 ((𝑥𝐴𝑦𝐴) → ((( I ↾ 𝐴) “ 𝑥) = 𝑦𝑥 = 𝑦))
87bj-imdiridlem 37302 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (( I ↾ 𝐴) “ 𝑥) = 𝑦)} = ( I ↾ 𝒫 𝐴)
94, 8eqtrdi 2784 1 (𝜑 → ((𝐴𝒫*𝐴)‘( I ↾ 𝐴)) = ( I ↾ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wss 3898  𝒫 cpw 4551  {copab 5157   I cid 5515   × cxp 5619  cres 5623  cima 5624  cfv 6489  (class class class)co 7355  𝒫*cimdir 37295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-imdir 37296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator