MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabidw Structured version   Visualization version   GIF version

Theorem opabidw 5504
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5505 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2377. (Revised by GG, 26-Jan-2024.)
Assertion
Ref Expression
opabidw (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabidw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opex 5444 . 2 𝑥, 𝑦⟩ ∈ V
2 copsexgw 5470 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
32bicomd 223 . 2 (𝑧 = ⟨𝑥, 𝑦⟩ → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑))
4 df-opab 5187 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
51, 3, 4elab2 3666 1 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4612  {copab 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-opab 5187
This theorem is referenced by:  rexopabb  5508  ssopab2bw  5527  dmopab  5900  rnopab  5939  funopab  6576  opabiota  6966  fvopab5  7024  f1ompt  7106  ovid  7553  zfrep6  7958  enssdom  8996  omxpenlem  9092  infxpenlem  10032  canthwelem  10669  pospo  18360  2ndcdisj  23399  lgsquadlem1  27348  lgsquadlem2  27349  h2hlm  30966  opabdm  32596  opabrn  32597  fpwrelmap  32715  eulerpartlemgvv  34413  fineqvrep  35131  satfvsucsuc  35392  bj-opelopabid  37210  phpreu  37633  poimirlem26  37675  vvdifopab  38283  brabidgaw  38388  diclspsn  41218  areaquad  43215  sprsymrelf  47489
  Copyright terms: Public domain W3C validator