Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5407 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 14-Apr-1995.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5348 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
2 | copsexgw 5373 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
3 | 2 | bicomd 226 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
4 | df-opab 5116 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
5 | 1, 3, 4 | elab2 3591 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 〈cop 4547 {copab 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-opab 5116 |
This theorem is referenced by: rexopabb 5409 ssopab2bw 5428 dmopab 5784 rnopab 5823 funopab 6415 opabiota 6794 fvopab5 6850 f1ompt 6928 ovid 7350 zfrep6 7728 enssdom 8653 omxpenlem 8746 infxpenlem 9627 canthwelem 10264 pospo 17851 2ndcdisj 22353 lgsquadlem1 26261 lgsquadlem2 26262 h2hlm 29061 opabdm 30670 opabrn 30671 fpwrelmap 30788 eulerpartlemgvv 32055 fineqvrep 32777 satfvsucsuc 33040 bj-opelopabid 35093 phpreu 35498 poimirlem26 35540 vvdifopab 36136 brabidgaw 36232 diclspsn 38945 areaquad 40750 sprsymrelf 44620 |
Copyright terms: Public domain | W3C validator |