| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5485 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5424 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 2 | copsexgw 5450 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
| 4 | df-opab 5170 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 5 | 1, 3, 4 | elab2 3649 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4595 {copab 5169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 |
| This theorem is referenced by: rexopabb 5488 ssopab2bw 5507 dmopab 5879 rnopab 5918 funopab 6551 opabiota 6943 fvopab5 7001 f1ompt 7083 ovid 7530 zfrep6 7933 enssdom 8948 omxpenlem 9042 infxpenlem 9966 canthwelem 10603 pospo 18304 2ndcdisj 23343 lgsquadlem1 27291 lgsquadlem2 27292 h2hlm 30909 opabdm 32539 opabrn 32540 fpwrelmap 32656 eulerpartlemgvv 34367 fineqvrep 35085 satfvsucsuc 35352 bj-opelopabid 37175 phpreu 37598 poimirlem26 37640 vvdifopab 38249 brabidgaw 38347 diclspsn 41188 areaquad 43205 sprsymrelf 47496 |
| Copyright terms: Public domain | W3C validator |