![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5544 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.) |
Ref | Expression |
---|---|
opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5484 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
2 | copsexgw 5510 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
3 | 2 | bicomd 223 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
4 | df-opab 5229 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
5 | 1, 3, 4 | elab2 3698 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 {copab 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 |
This theorem is referenced by: rexopabb 5547 ssopab2bw 5566 dmopab 5940 rnopab 5979 funopab 6613 opabiota 7004 fvopab5 7062 f1ompt 7145 ovid 7591 zfrep6 7995 enssdom 9037 omxpenlem 9139 infxpenlem 10082 canthwelem 10719 pospo 18415 2ndcdisj 23485 lgsquadlem1 27442 lgsquadlem2 27443 h2hlm 31012 opabdm 32633 opabrn 32634 fpwrelmap 32747 eulerpartlemgvv 34341 fineqvrep 35071 satfvsucsuc 35333 bj-opelopabid 37153 phpreu 37564 poimirlem26 37606 vvdifopab 38216 brabidgaw 38321 diclspsn 41151 areaquad 43177 sprsymrelf 47369 |
Copyright terms: Public domain | W3C validator |