| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5468 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5407 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 2 | copsexgw 5433 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
| 4 | df-opab 5155 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 5 | 1, 3, 4 | elab2 3638 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4583 {copab 5154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5155 |
| This theorem is referenced by: rexopabb 5471 ssopab2bw 5490 dmopab 5858 rnopab 5896 funopab 6517 opabiota 6905 fvopab5 6963 f1ompt 7045 ovid 7490 zfrep6 7890 enssdom 8902 omxpenlem 8995 infxpenlem 9907 canthwelem 10544 pospo 18249 2ndcdisj 23341 lgsquadlem1 27289 lgsquadlem2 27290 h2hlm 30924 opabdm 32556 opabrn 32557 fpwrelmap 32676 eulerpartlemgvv 34344 fineqvrep 35070 satfvsucsuc 35342 bj-opelopabid 37165 phpreu 37588 poimirlem26 37630 vvdifopab 38239 brabidgaw 38337 diclspsn 41177 areaquad 43193 sprsymrelf 47483 |
| Copyright terms: Public domain | W3C validator |