![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5524 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2369. (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
opabidw | ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5463 | . 2 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
2 | copsexgw 5489 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)) |
4 | df-opab 5210 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
5 | 1, 3, 4 | elab2 3671 | 1 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ⟨cop 4633 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 |
This theorem is referenced by: rexopabb 5527 ssopab2bw 5546 dmopab 5914 rnopab 5952 funopab 6582 opabiota 6973 fvopab5 7029 f1ompt 7111 ovid 7551 zfrep6 7943 enssdom 8975 omxpenlem 9075 infxpenlem 10010 canthwelem 10647 pospo 18302 2ndcdisj 23180 lgsquadlem1 27119 lgsquadlem2 27120 h2hlm 30500 opabdm 32107 opabrn 32108 fpwrelmap 32225 eulerpartlemgvv 33673 fineqvrep 34393 satfvsucsuc 34654 bj-opelopabid 36371 phpreu 36775 poimirlem26 36817 vvdifopab 37431 brabidgaw 37537 diclspsn 40368 areaquad 42267 sprsymrelf 46461 |
Copyright terms: Public domain | W3C validator |