| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5463 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5402 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 2 | copsexgw 5428 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
| 4 | df-opab 5152 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 5 | 1, 3, 4 | elab2 3633 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4579 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 |
| This theorem is referenced by: rexopabb 5466 ssopab2bw 5485 dmopab 5854 rnopab 5893 funopab 6516 opabiota 6904 fvopab5 6962 f1ompt 7044 ovid 7487 zfrep6 7887 enssdom 8899 omxpenlem 8991 infxpenlem 9904 canthwelem 10541 pospo 18249 2ndcdisj 23371 lgsquadlem1 27318 lgsquadlem2 27319 h2hlm 30960 opabdm 32594 opabrn 32595 fpwrelmap 32716 eulerpartlemgvv 34389 fineqvrep 35137 satfvsucsuc 35409 bj-opelopabid 37231 phpreu 37654 poimirlem26 37696 vvdifopab 38307 brabidgaw 38407 diclspsn 41303 areaquad 43319 sprsymrelf 47605 |
| Copyright terms: Public domain | W3C validator |