MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabidw Structured version   Visualization version   GIF version

Theorem opabidw 5484
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5485 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.)
Assertion
Ref Expression
opabidw (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabidw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opex 5424 . 2 𝑥, 𝑦⟩ ∈ V
2 copsexgw 5450 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
32bicomd 223 . 2 (𝑧 = ⟨𝑥, 𝑦⟩ → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑))
4 df-opab 5170 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
51, 3, 4elab2 3649 1 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4595  {copab 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170
This theorem is referenced by:  rexopabb  5488  ssopab2bw  5507  dmopab  5879  rnopab  5918  funopab  6551  opabiota  6943  fvopab5  7001  f1ompt  7083  ovid  7530  zfrep6  7933  enssdom  8948  omxpenlem  9042  infxpenlem  9966  canthwelem  10603  pospo  18304  2ndcdisj  23343  lgsquadlem1  27291  lgsquadlem2  27292  h2hlm  30909  opabdm  32539  opabrn  32540  fpwrelmap  32656  eulerpartlemgvv  34367  fineqvrep  35085  satfvsucsuc  35352  bj-opelopabid  37175  phpreu  37598  poimirlem26  37640  vvdifopab  38249  brabidgaw  38347  diclspsn  41188  areaquad  43205  sprsymrelf  47496
  Copyright terms: Public domain W3C validator