| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5480 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5419 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 2 | copsexgw 5445 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
| 4 | df-opab 5165 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 5 | 1, 3, 4 | elab2 3646 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4591 {copab 5164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 |
| This theorem is referenced by: rexopabb 5483 ssopab2bw 5502 dmopab 5869 rnopab 5907 funopab 6535 opabiota 6925 fvopab5 6983 f1ompt 7065 ovid 7510 zfrep6 7913 enssdom 8925 omxpenlem 9019 infxpenlem 9942 canthwelem 10579 pospo 18284 2ndcdisj 23376 lgsquadlem1 27324 lgsquadlem2 27325 h2hlm 30959 opabdm 32589 opabrn 32590 fpwrelmap 32706 eulerpartlemgvv 34360 fineqvrep 35078 satfvsucsuc 35345 bj-opelopabid 37168 phpreu 37591 poimirlem26 37633 vvdifopab 38242 brabidgaw 38340 diclspsn 41181 areaquad 43198 sprsymrelf 47489 |
| Copyright terms: Public domain | W3C validator |