![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5531 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2366. (Revised by GG, 26-Jan-2024.) |
Ref | Expression |
---|---|
opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5470 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
2 | copsexgw 5496 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
4 | df-opab 5216 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
5 | 1, 3, 4 | elab2 3670 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 〈cop 4639 {copab 5215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-opab 5216 |
This theorem is referenced by: rexopabb 5534 ssopab2bw 5553 dmopab 5922 rnopab 5960 funopab 6594 opabiota 6985 fvopab5 7042 f1ompt 7125 ovid 7567 zfrep6 7968 enssdom 9008 omxpenlem 9111 infxpenlem 10056 canthwelem 10693 pospo 18370 2ndcdisj 23451 lgsquadlem1 27409 lgsquadlem2 27410 h2hlm 30913 opabdm 32531 opabrn 32532 fpwrelmap 32647 eulerpartlemgvv 34210 fineqvrep 34931 satfvsucsuc 35193 bj-opelopabid 36894 phpreu 37305 poimirlem26 37347 vvdifopab 37958 brabidgaw 38063 diclspsn 40893 areaquad 42881 sprsymrelf 47067 |
Copyright terms: Public domain | W3C validator |