| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5505 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 14-Apr-1995.) Avoid ax-13 2377. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5444 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 2 | copsexgw 5470 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
| 3 | 2 | bicomd 223 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
| 4 | df-opab 5187 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 5 | 1, 3, 4 | elab2 3666 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4612 {copab 5186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 |
| This theorem is referenced by: rexopabb 5508 ssopab2bw 5527 dmopab 5900 rnopab 5939 funopab 6576 opabiota 6966 fvopab5 7024 f1ompt 7106 ovid 7553 zfrep6 7958 enssdom 8996 omxpenlem 9092 infxpenlem 10032 canthwelem 10669 pospo 18360 2ndcdisj 23399 lgsquadlem1 27348 lgsquadlem2 27349 h2hlm 30966 opabdm 32596 opabrn 32597 fpwrelmap 32715 eulerpartlemgvv 34413 fineqvrep 35131 satfvsucsuc 35392 bj-opelopabid 37210 phpreu 37633 poimirlem26 37675 vvdifopab 38283 brabidgaw 38388 diclspsn 41218 areaquad 43215 sprsymrelf 47489 |
| Copyright terms: Public domain | W3C validator |