Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabidw | Structured version Visualization version GIF version |
Description: The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 5432 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 14-Apr-1995.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
opabidw | ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . 2 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
2 | copsexgw 5398 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝜑 ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑))) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜑)) |
4 | df-opab 5133 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
5 | 1, 3, 4 | elab2 3606 | 1 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 〈cop 4564 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 |
This theorem is referenced by: rexopabb 5434 ssopab2bw 5453 dmopab 5813 rnopab 5852 funopab 6453 opabiota 6833 fvopab5 6889 f1ompt 6967 ovid 7392 zfrep6 7771 enssdom 8720 omxpenlem 8813 infxpenlem 9700 canthwelem 10337 pospo 17978 2ndcdisj 22515 lgsquadlem1 26433 lgsquadlem2 26434 h2hlm 29243 opabdm 30852 opabrn 30853 fpwrelmap 30970 eulerpartlemgvv 32243 fineqvrep 32964 satfvsucsuc 33227 bj-opelopabid 35285 phpreu 35688 poimirlem26 35730 vvdifopab 36326 brabidgaw 36422 diclspsn 39135 areaquad 40963 sprsymrelf 44835 |
Copyright terms: Public domain | W3C validator |