![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj590 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 31837. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj590.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj590 | ⊢ ((𝐵 = suc 𝑖 ∧ 𝜓) → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj590.1 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
2 | rsp 3156 | . . . 4 ⊢ (∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) | |
3 | 1, 2 | sylbi 209 | . . 3 ⊢ (𝜓 → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
4 | eleq1 2854 | . . . . 5 ⊢ (𝐵 = suc 𝑖 → (𝐵 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑛)) | |
5 | fveqeq2 6508 | . . . . 5 ⊢ (𝐵 = suc 𝑖 → ((𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
6 | 4, 5 | imbi12d 337 | . . . 4 ⊢ (𝐵 = suc 𝑖 → ((𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
7 | 6 | imbi2d 333 | . . 3 ⊢ (𝐵 = suc 𝑖 → ((𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
8 | 3, 7 | syl5ibr 238 | . 2 ⊢ (𝐵 = suc 𝑖 → (𝜓 → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
9 | 8 | imp 398 | 1 ⊢ ((𝐵 = suc 𝑖 ∧ 𝜓) → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3089 ∪ ciun 4792 suc csuc 6031 ‘cfv 6188 ωcom 7396 predc-bnj14 31603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-iota 6152 df-fv 6196 |
This theorem is referenced by: bnj594 31828 |
Copyright terms: Public domain | W3C validator |