Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj590 Structured version   Visualization version   GIF version

Theorem bnj590 34672
Description: Technical lemma for bnj852 34683. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj590.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj590 ((𝐵 = suc 𝑖𝜓) → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))

Proof of Theorem bnj590
StepHypRef Expression
1 bnj590.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2 rsp 3234 . . . 4 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
31, 2sylbi 216 . . 3 (𝜓 → (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 eleq1 2813 . . . . 5 (𝐵 = suc 𝑖 → (𝐵𝑛 ↔ suc 𝑖𝑛))
5 fveqeq2 6905 . . . . 5 (𝐵 = suc 𝑖 → ((𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
64, 5imbi12d 343 . . . 4 (𝐵 = suc 𝑖 → ((𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
76imbi2d 339 . . 3 (𝐵 = suc 𝑖 → ((𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
83, 7imbitrrid 245 . 2 (𝐵 = suc 𝑖 → (𝜓 → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
98imp 405 1 ((𝐵 = suc 𝑖𝜓) → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050   ciun 4997  suc csuc 6373  cfv 6549  ωcom 7871   predc-bnj14 34450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557
This theorem is referenced by:  bnj594  34674
  Copyright terms: Public domain W3C validator