Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj590 Structured version   Visualization version   GIF version

Theorem bnj590 33909
Description: Technical lemma for bnj852 33920. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj590.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj590 ((𝐵 = suc 𝑖𝜓) → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))

Proof of Theorem bnj590
StepHypRef Expression
1 bnj590.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2 rsp 3244 . . . 4 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
31, 2sylbi 216 . . 3 (𝜓 → (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 eleq1 2821 . . . . 5 (𝐵 = suc 𝑖 → (𝐵𝑛 ↔ suc 𝑖𝑛))
5 fveqeq2 6897 . . . . 5 (𝐵 = suc 𝑖 → ((𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
64, 5imbi12d 344 . . . 4 (𝐵 = suc 𝑖 → ((𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
76imbi2d 340 . . 3 (𝐵 = suc 𝑖 → ((𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
83, 7imbitrrid 245 . 2 (𝐵 = suc 𝑖 → (𝜓 → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
98imp 407 1 ((𝐵 = suc 𝑖𝜓) → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061   ciun 4996  suc csuc 6363  cfv 6540  ωcom 7851   predc-bnj14 33687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548
This theorem is referenced by:  bnj594  33911
  Copyright terms: Public domain W3C validator