Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj590 Structured version   Visualization version   GIF version

Theorem bnj590 34917
Description: Technical lemma for bnj852 34928. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj590.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj590 ((𝐵 = suc 𝑖𝜓) → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))

Proof of Theorem bnj590
StepHypRef Expression
1 bnj590.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2 rsp 3247 . . . 4 (∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
31, 2sylbi 217 . . 3 (𝜓 → (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
4 eleq1 2829 . . . . 5 (𝐵 = suc 𝑖 → (𝐵𝑛 ↔ suc 𝑖𝑛))
5 fveqeq2 6923 . . . . 5 (𝐵 = suc 𝑖 → ((𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
64, 5imbi12d 344 . . . 4 (𝐵 = suc 𝑖 → ((𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
76imbi2d 340 . . 3 (𝐵 = suc 𝑖 → ((𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
83, 7imbitrrid 246 . 2 (𝐵 = suc 𝑖 → (𝜓 → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
98imp 406 1 ((𝐵 = suc 𝑖𝜓) → (𝑖 ∈ ω → (𝐵𝑛 → (𝑓𝐵) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wral 3061   ciun 4999  suc csuc 6394  cfv 6569  ωcom 7894   predc-bnj14 34695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577
This theorem is referenced by:  bnj594  34919
  Copyright terms: Public domain W3C validator