| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj590 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34917. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj590.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj590 | ⊢ ((𝐵 = suc 𝑖 ∧ 𝜓) → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj590.1 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 2 | rsp 3226 | . . . 4 ⊢ (∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (𝜓 → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 4 | eleq1 2817 | . . . . 5 ⊢ (𝐵 = suc 𝑖 → (𝐵 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑛)) | |
| 5 | fveqeq2 6869 | . . . . 5 ⊢ (𝐵 = suc 𝑖 → ((𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 6 | 4, 5 | imbi12d 344 | . . . 4 ⊢ (𝐵 = suc 𝑖 → ((𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 7 | 6 | imbi2d 340 | . . 3 ⊢ (𝐵 = suc 𝑖 → ((𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
| 8 | 3, 7 | imbitrrid 246 | . 2 ⊢ (𝐵 = suc 𝑖 → (𝜓 → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
| 9 | 8 | imp 406 | 1 ⊢ ((𝐵 = suc 𝑖 ∧ 𝜓) → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∪ ciun 4957 suc csuc 6336 ‘cfv 6513 ωcom 7844 predc-bnj14 34684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-iota 6466 df-fv 6521 |
| This theorem is referenced by: bnj594 34908 |
| Copyright terms: Public domain | W3C validator |