![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj590 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34928. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj590.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj590 | ⊢ ((𝐵 = suc 𝑖 ∧ 𝜓) → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj590.1 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
2 | rsp 3247 | . . . 4 ⊢ (∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) | |
3 | 1, 2 | sylbi 217 | . . 3 ⊢ (𝜓 → (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
4 | eleq1 2829 | . . . . 5 ⊢ (𝐵 = suc 𝑖 → (𝐵 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑛)) | |
5 | fveqeq2 6923 | . . . . 5 ⊢ (𝐵 = suc 𝑖 → ((𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
6 | 4, 5 | imbi12d 344 | . . . 4 ⊢ (𝐵 = suc 𝑖 → ((𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
7 | 6 | imbi2d 340 | . . 3 ⊢ (𝐵 = suc 𝑖 → ((𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
8 | 3, 7 | imbitrrid 246 | . 2 ⊢ (𝐵 = suc 𝑖 → (𝜓 → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
9 | 8 | imp 406 | 1 ⊢ ((𝐵 = suc 𝑖 ∧ 𝜓) → (𝑖 ∈ ω → (𝐵 ∈ 𝑛 → (𝑓‘𝐵) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∪ ciun 4999 suc csuc 6394 ‘cfv 6569 ωcom 7894 predc-bnj14 34695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 |
This theorem is referenced by: bnj594 34919 |
Copyright terms: Public domain | W3C validator |