Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj591 Structured version   Visualization version   GIF version

Theorem bnj591 33254
Description: Technical lemma for bnj852 33264. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj591.1 (𝜃 ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑗) = (𝑔𝑗)))
Assertion
Ref Expression
bnj591 ([𝑘 / 𝑗]𝜃 ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑘) = (𝑔𝑘)))
Distinct variable groups:   𝐷,𝑗   𝜒,𝑗   𝑗,𝜒′   𝑓,𝑗   𝑔,𝑗   𝑗,𝑘   𝑗,𝑛
Allowed substitution hints:   𝜒(𝑓,𝑔,𝑘,𝑛)   𝜃(𝑓,𝑔,𝑗,𝑘,𝑛)   𝐷(𝑓,𝑔,𝑘,𝑛)   𝜒′(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem bnj591
StepHypRef Expression
1 bnj591.1 . . 3 (𝜃 ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑗) = (𝑔𝑗)))
21sbcbii 3794 . 2 ([𝑘 / 𝑗]𝜃[𝑘 / 𝑗]((𝑛𝐷𝜒𝜒′) → (𝑓𝑗) = (𝑔𝑗)))
3 vex 3447 . . 3 𝑘 ∈ V
4 fveq2 6834 . . . . 5 (𝑗 = 𝑘 → (𝑓𝑗) = (𝑓𝑘))
5 fveq2 6834 . . . . 5 (𝑗 = 𝑘 → (𝑔𝑗) = (𝑔𝑘))
64, 5eqeq12d 2753 . . . 4 (𝑗 = 𝑘 → ((𝑓𝑗) = (𝑔𝑗) ↔ (𝑓𝑘) = (𝑔𝑘)))
76imbi2d 341 . . 3 (𝑗 = 𝑘 → (((𝑛𝐷𝜒𝜒′) → (𝑓𝑗) = (𝑔𝑗)) ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑘) = (𝑔𝑘))))
83, 7sbcie 3777 . 2 ([𝑘 / 𝑗]((𝑛𝐷𝜒𝜒′) → (𝑓𝑗) = (𝑔𝑗)) ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑘) = (𝑔𝑘)))
92, 8bitri 275 1 ([𝑘 / 𝑗]𝜃 ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑘) = (𝑔𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  [wsbc 3734  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3406  df-v 3445  df-sbc 3735  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-iota 6440  df-fv 6496
This theorem is referenced by:  bnj580  33256
  Copyright terms: Public domain W3C validator