Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj591 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32901. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj591.1 | ⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
Ref | Expression |
---|---|
bnj591 | ⊢ ([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj591.1 | . . 3 ⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) | |
2 | 1 | sbcbii 3776 | . 2 ⊢ ([𝑘 / 𝑗]𝜃 ↔ [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
3 | vex 3436 | . . 3 ⊢ 𝑘 ∈ V | |
4 | fveq2 6774 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑓‘𝑗) = (𝑓‘𝑘)) | |
5 | fveq2 6774 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑔‘𝑗) = (𝑔‘𝑘)) | |
6 | 4, 5 | eqeq12d 2754 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑓‘𝑗) = (𝑔‘𝑗) ↔ (𝑓‘𝑘) = (𝑔‘𝑘))) |
7 | 6 | imbi2d 341 | . . 3 ⊢ (𝑗 = 𝑘 → (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘)))) |
8 | 3, 7 | sbcie 3759 | . 2 ⊢ ([𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
9 | 2, 8 | bitri 274 | 1 ⊢ ([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 [wsbc 3716 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: bnj580 32893 |
Copyright terms: Public domain | W3C validator |