| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj591 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34918. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj591.1 | ⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
| Ref | Expression |
|---|---|
| bnj591 | ⊢ ([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj591.1 | . . 3 ⊢ (𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) | |
| 2 | 1 | sbcbii 3813 | . 2 ⊢ ([𝑘 / 𝑗]𝜃 ↔ [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗))) |
| 3 | vex 3454 | . . 3 ⊢ 𝑘 ∈ V | |
| 4 | fveq2 6861 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑓‘𝑗) = (𝑓‘𝑘)) | |
| 5 | fveq2 6861 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑔‘𝑗) = (𝑔‘𝑘)) | |
| 6 | 4, 5 | eqeq12d 2746 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑓‘𝑗) = (𝑔‘𝑗) ↔ (𝑓‘𝑘) = (𝑔‘𝑘))) |
| 7 | 6 | imbi2d 340 | . . 3 ⊢ (𝑗 = 𝑘 → (((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘)))) |
| 8 | 3, 7 | sbcie 3798 | . 2 ⊢ ([𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ ([𝑘 / 𝑗]𝜃 ↔ ((𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′) → (𝑓‘𝑘) = (𝑔‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 [wsbc 3756 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: bnj580 34910 |
| Copyright terms: Public domain | W3C validator |