Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj589 Structured version   Visualization version   GIF version

Theorem bnj589 32889
Description: Technical lemma for bnj852 32901. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj589.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj589 (𝜓 ↔ ∀𝑘 ∈ ω (suc 𝑘𝑛 → (𝑓‘suc 𝑘) = 𝑦 ∈ (𝑓𝑘) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑖,𝑘   𝑅,𝑖,𝑘   𝑓,𝑖,𝑘,𝑦   𝑖,𝑛,𝑘
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖,𝑘,𝑛)   𝐴(𝑦,𝑓,𝑛)   𝑅(𝑦,𝑓,𝑛)

Proof of Theorem bnj589
StepHypRef Expression
1 bnj589.1 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
21bnj222 32863 1 (𝜓 ↔ ∀𝑘 ∈ ω (suc 𝑘𝑛 → (𝑓‘suc 𝑘) = 𝑦 ∈ (𝑓𝑘) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064   ciun 4924  suc csuc 6268  cfv 6433  ωcom 7712   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-suc 6272  df-iota 6391  df-fv 6441
This theorem is referenced by:  bnj594  32892  bnj1128  32970  bnj1145  32973
  Copyright terms: Public domain W3C validator