![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj958 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34021. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj958.1 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj958.2 | ⊢ 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩}) |
Ref | Expression |
---|---|
bnj958 | ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj958.2 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩}) | |
2 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
3 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑛 | |
4 | bnj958.1 | . . . . . . . . 9 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
5 | nfiu1 5032 | . . . . . . . . 9 ⊢ Ⅎ𝑦∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
6 | 4, 5 | nfcxfr 2902 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐶 |
7 | 3, 6 | nfop 4890 | . . . . . . 7 ⊢ Ⅎ𝑦⟨𝑛, 𝐶⟩ |
8 | 7 | nfsn 4712 | . . . . . 6 ⊢ Ⅎ𝑦{⟨𝑛, 𝐶⟩} |
9 | 2, 8 | nfun 4166 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ∪ {⟨𝑛, 𝐶⟩}) |
10 | 1, 9 | nfcxfr 2902 | . . . 4 ⊢ Ⅎ𝑦𝐺 |
11 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦𝑖 | |
12 | 10, 11 | nffv 6902 | . . 3 ⊢ Ⅎ𝑦(𝐺‘𝑖) |
13 | 12 | nfeq1 2919 | . 2 ⊢ Ⅎ𝑦(𝐺‘𝑖) = (𝑓‘𝑖) |
14 | 13 | nf5ri 2189 | 1 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1542 ∪ cun 3947 {csn 4629 ⟨cop 4635 ∪ ciun 4998 ‘cfv 6544 predc-bnj14 33699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-iota 6496 df-fv 6552 |
This theorem is referenced by: bnj966 33955 bnj967 33956 |
Copyright terms: Public domain | W3C validator |