Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj958 Structured version   Visualization version   GIF version

Theorem bnj958 34971
Description: Technical lemma for bnj69 35041. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj958.1 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj958.2 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj958 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
Distinct variable groups:   𝑦,𝑓   𝑦,𝑖   𝑦,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛)

Proof of Theorem bnj958
StepHypRef Expression
1 bnj958.2 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 nfcv 2898 . . . . . 6 𝑦𝑓
3 nfcv 2898 . . . . . . . 8 𝑦𝑛
4 bnj958.1 . . . . . . . . 9 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
5 nfiu1 5003 . . . . . . . . 9 𝑦 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
64, 5nfcxfr 2896 . . . . . . . 8 𝑦𝐶
73, 6nfop 4865 . . . . . . 7 𝑦𝑛, 𝐶
87nfsn 4683 . . . . . 6 𝑦{⟨𝑛, 𝐶⟩}
92, 8nfun 4145 . . . . 5 𝑦(𝑓 ∪ {⟨𝑛, 𝐶⟩})
101, 9nfcxfr 2896 . . . 4 𝑦𝐺
11 nfcv 2898 . . . 4 𝑦𝑖
1210, 11nffv 6886 . . 3 𝑦(𝐺𝑖)
1312nfeq1 2914 . 2 𝑦(𝐺𝑖) = (𝑓𝑖)
1413nf5ri 2195 1 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  cun 3924  {csn 4601  cop 4607   ciun 4967  cfv 6531   predc-bnj14 34719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-iota 6484  df-fv 6539
This theorem is referenced by:  bnj966  34975  bnj967  34976
  Copyright terms: Public domain W3C validator