![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj958 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 35003. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj958.1 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj958.2 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj958 | ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj958.2 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
3 | nfcv 2903 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑛 | |
4 | bnj958.1 | . . . . . . . . 9 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
5 | nfiu1 5032 | . . . . . . . . 9 ⊢ Ⅎ𝑦∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
6 | 4, 5 | nfcxfr 2901 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐶 |
7 | 3, 6 | nfop 4894 | . . . . . . 7 ⊢ Ⅎ𝑦〈𝑛, 𝐶〉 |
8 | 7 | nfsn 4712 | . . . . . 6 ⊢ Ⅎ𝑦{〈𝑛, 𝐶〉} |
9 | 2, 8 | nfun 4180 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ∪ {〈𝑛, 𝐶〉}) |
10 | 1, 9 | nfcxfr 2901 | . . . 4 ⊢ Ⅎ𝑦𝐺 |
11 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑦𝑖 | |
12 | 10, 11 | nffv 6917 | . . 3 ⊢ Ⅎ𝑦(𝐺‘𝑖) |
13 | 12 | nfeq1 2919 | . 2 ⊢ Ⅎ𝑦(𝐺‘𝑖) = (𝑓‘𝑖) |
14 | 13 | nf5ri 2193 | 1 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∪ cun 3961 {csn 4631 〈cop 4637 ∪ ciun 4996 ‘cfv 6563 predc-bnj14 34681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: bnj966 34937 bnj967 34938 |
Copyright terms: Public domain | W3C validator |