Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj958 Structured version   Visualization version   GIF version

Theorem bnj958 32899
Description: Technical lemma for bnj69 32969. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj958.1 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj958.2 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj958 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
Distinct variable groups:   𝑦,𝑓   𝑦,𝑖   𝑦,𝑛
Allowed substitution hints:   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐺(𝑦,𝑓,𝑖,𝑚,𝑛)

Proof of Theorem bnj958
StepHypRef Expression
1 bnj958.2 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
2 nfcv 2908 . . . . . 6 𝑦𝑓
3 nfcv 2908 . . . . . . . 8 𝑦𝑛
4 bnj958.1 . . . . . . . . 9 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
5 nfiu1 4963 . . . . . . . . 9 𝑦 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
64, 5nfcxfr 2906 . . . . . . . 8 𝑦𝐶
73, 6nfop 4825 . . . . . . 7 𝑦𝑛, 𝐶
87nfsn 4648 . . . . . 6 𝑦{⟨𝑛, 𝐶⟩}
92, 8nfun 4103 . . . . 5 𝑦(𝑓 ∪ {⟨𝑛, 𝐶⟩})
101, 9nfcxfr 2906 . . . 4 𝑦𝐺
11 nfcv 2908 . . . 4 𝑦𝑖
1210, 11nffv 6778 . . 3 𝑦(𝐺𝑖)
1312nfeq1 2923 . 2 𝑦(𝐺𝑖) = (𝑓𝑖)
1413nf5ri 2191 1 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  cun 3889  {csn 4566  cop 4572   ciun 4929  cfv 6430   predc-bnj14 32646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-iota 6388  df-fv 6438
This theorem is referenced by:  bnj966  32903  bnj967  32904
  Copyright terms: Public domain W3C validator