Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj958 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 33039. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj958.1 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj958.2 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj958 | ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj958.2 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
3 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑛 | |
4 | bnj958.1 | . . . . . . . . 9 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
5 | nfiu1 4965 | . . . . . . . . 9 ⊢ Ⅎ𝑦∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
6 | 4, 5 | nfcxfr 2902 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐶 |
7 | 3, 6 | nfop 4825 | . . . . . . 7 ⊢ Ⅎ𝑦〈𝑛, 𝐶〉 |
8 | 7 | nfsn 4647 | . . . . . 6 ⊢ Ⅎ𝑦{〈𝑛, 𝐶〉} |
9 | 2, 8 | nfun 4105 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ∪ {〈𝑛, 𝐶〉}) |
10 | 1, 9 | nfcxfr 2902 | . . . 4 ⊢ Ⅎ𝑦𝐺 |
11 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦𝑖 | |
12 | 10, 11 | nffv 6814 | . . 3 ⊢ Ⅎ𝑦(𝐺‘𝑖) |
13 | 12 | nfeq1 2919 | . 2 ⊢ Ⅎ𝑦(𝐺‘𝑖) = (𝑓‘𝑖) |
14 | 13 | nf5ri 2186 | 1 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∪ cun 3890 {csn 4565 〈cop 4571 ∪ ciun 4931 ‘cfv 6458 predc-bnj14 32716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-iota 6410 df-fv 6466 |
This theorem is referenced by: bnj966 32973 bnj967 32974 |
Copyright terms: Public domain | W3C validator |