Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj958 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32969. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj958.1 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj958.2 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj958 | ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj958.2 | . . . . 5 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
2 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑦𝑓 | |
3 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑦𝑛 | |
4 | bnj958.1 | . . . . . . . . 9 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
5 | nfiu1 4963 | . . . . . . . . 9 ⊢ Ⅎ𝑦∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
6 | 4, 5 | nfcxfr 2906 | . . . . . . . 8 ⊢ Ⅎ𝑦𝐶 |
7 | 3, 6 | nfop 4825 | . . . . . . 7 ⊢ Ⅎ𝑦〈𝑛, 𝐶〉 |
8 | 7 | nfsn 4648 | . . . . . 6 ⊢ Ⅎ𝑦{〈𝑛, 𝐶〉} |
9 | 2, 8 | nfun 4103 | . . . . 5 ⊢ Ⅎ𝑦(𝑓 ∪ {〈𝑛, 𝐶〉}) |
10 | 1, 9 | nfcxfr 2906 | . . . 4 ⊢ Ⅎ𝑦𝐺 |
11 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑦𝑖 | |
12 | 10, 11 | nffv 6778 | . . 3 ⊢ Ⅎ𝑦(𝐺‘𝑖) |
13 | 12 | nfeq1 2923 | . 2 ⊢ Ⅎ𝑦(𝐺‘𝑖) = (𝑓‘𝑖) |
14 | 13 | nf5ri 2191 | 1 ⊢ ((𝐺‘𝑖) = (𝑓‘𝑖) → ∀𝑦(𝐺‘𝑖) = (𝑓‘𝑖)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∪ cun 3889 {csn 4566 〈cop 4572 ∪ ciun 4929 ‘cfv 6430 predc-bnj14 32646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-iota 6388 df-fv 6438 |
This theorem is referenced by: bnj966 32903 bnj967 32904 |
Copyright terms: Public domain | W3C validator |