| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brintclab | Structured version Visualization version GIF version | ||
| Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| brintclab | ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5144 | . 2 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑}) | |
| 2 | opex 5469 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | elintab 4958 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 {cab 2714 〈cop 4632 ∩ cint 4946 class class class wbr 5143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-int 4947 df-br 5144 |
| This theorem is referenced by: brtrclfv 15041 |
| Copyright terms: Public domain | W3C validator |