MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brintclab Structured version   Visualization version   GIF version

Theorem brintclab 14912
Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.)
Assertion
Ref Expression
brintclab (𝐴 {𝑥𝜑}𝐵 ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem brintclab
StepHypRef Expression
1 df-br 5096 . 2 (𝐴 {𝑥𝜑}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {𝑥𝜑})
2 opex 5409 . . 3 𝐴, 𝐵⟩ ∈ V
32elintab 4911 . 2 (⟨𝐴, 𝐵⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
41, 3bitri 275 1 (𝐴 {𝑥𝜑}𝐵 ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2113  {cab 2711  cop 4583   cint 4899   class class class wbr 5095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-int 4900  df-br 5096
This theorem is referenced by:  brtrclfv  14913
  Copyright terms: Public domain W3C validator