MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brintclab Structured version   Visualization version   GIF version

Theorem brintclab 14640
Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.)
Assertion
Ref Expression
brintclab (𝐴 {𝑥𝜑}𝐵 ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem brintclab
StepHypRef Expression
1 df-br 5071 . 2 (𝐴 {𝑥𝜑}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {𝑥𝜑})
2 opex 5373 . . 3 𝐴, 𝐵⟩ ∈ V
32elintab 4887 . 2 (⟨𝐴, 𝐵⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
41, 3bitri 274 1 (𝐴 {𝑥𝜑}𝐵 ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  {cab 2715  cop 4564   cint 4876   class class class wbr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-int 4877  df-br 5071
This theorem is referenced by:  brtrclfv  14641
  Copyright terms: Public domain W3C validator