![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brintclab | Structured version Visualization version GIF version |
Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.) |
Ref | Expression |
---|---|
brintclab | ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑}) | |
2 | opex 5475 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | elintab 4963 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2106 {cab 2712 〈cop 4637 ∩ cint 4951 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-int 4952 df-br 5149 |
This theorem is referenced by: brtrclfv 15038 |
Copyright terms: Public domain | W3C validator |