MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brintclab Structured version   Visualization version   GIF version

Theorem brintclab 14952
Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.)
Assertion
Ref Expression
brintclab (𝐴 {𝑥𝜑}𝐵 ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem brintclab
StepHypRef Expression
1 df-br 5148 . 2 (𝐴 {𝑥𝜑}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {𝑥𝜑})
2 opex 5463 . . 3 𝐴, 𝐵⟩ ∈ V
32elintab 4961 . 2 (⟨𝐴, 𝐵⟩ ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
41, 3bitri 274 1 (𝐴 {𝑥𝜑}𝐵 ↔ ∀𝑥(𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2104  {cab 2707  cop 4633   cint 4949   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-int 4950  df-br 5148
This theorem is referenced by:  brtrclfv  14953
  Copyright terms: Public domain W3C validator