| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brintclab | Structured version Visualization version GIF version | ||
| Description: Two ways to express a binary relation which is the intersection of a class. (Contributed by RP, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| brintclab | ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5092 | . 2 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑}) | |
| 2 | opex 5404 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | elintab 4909 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴∩ {𝑥 ∣ 𝜑}𝐵 ↔ ∀𝑥(𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 {cab 2709 〈cop 4582 ∩ cint 4897 class class class wbr 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-int 4898 df-br 5092 |
| This theorem is referenced by: brtrclfv 14909 |
| Copyright terms: Public domain | W3C validator |