![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brtrclfv | Structured version Visualization version GIF version |
Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
brtrclfv | ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfv 14894 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
2 | 1 | breqd 5120 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ 𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵)) |
3 | brintclab 14895 | . . 3 ⊢ (𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟)) | |
4 | df-br 5110 | . . . . 5 ⊢ (𝐴𝑟𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑟) | |
5 | 4 | imbi2i 336 | . . . 4 ⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟)) |
6 | 5 | albii 1822 | . . 3 ⊢ (∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟)) |
7 | 3, 6 | bitr4i 278 | . 2 ⊢ (𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)) |
8 | 2, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 {cab 2710 ⊆ wss 3914 ⟨cop 4596 ∩ cint 4911 class class class wbr 5109 ∘ ccom 5641 ‘cfv 6500 t+ctcl 14879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-iota 6452 df-fun 6502 df-fv 6508 df-trcl 14881 |
This theorem is referenced by: brcnvtrclfv 14897 brtrclfvcnv 14898 trclfvcotr 14903 |
Copyright terms: Public domain | W3C validator |