|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > brtrclfv | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.) | 
| Ref | Expression | 
|---|---|
| brtrclfv | ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trclfv 15039 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
| 2 | 1 | breqd 5154 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ 𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵)) | 
| 3 | brintclab 15040 | . . 3 ⊢ (𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) | |
| 4 | df-br 5144 | . . . . 5 ⊢ (𝐴𝑟𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑟) | |
| 5 | 4 | imbi2i 336 | . . . 4 ⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) | 
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) | 
| 7 | 3, 6 | bitr4i 278 | . 2 ⊢ (𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)) | 
| 8 | 2, 7 | bitrdi 287 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 {cab 2714 ⊆ wss 3951 〈cop 4632 ∩ cint 4946 class class class wbr 5143 ∘ ccom 5689 ‘cfv 6561 t+ctcl 15024 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-trcl 15026 | 
| This theorem is referenced by: brcnvtrclfv 15042 brtrclfvcnv 15043 trclfvcotr 15048 | 
| Copyright terms: Public domain | W3C validator |