MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtrclfv Structured version   Visualization version   GIF version

Theorem brtrclfv 14975
Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
brtrclfv (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hint:   𝑉(𝑟)

Proof of Theorem brtrclfv
StepHypRef Expression
1 trclfv 14973 . . 3 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
21breqd 5121 . 2 (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵))
3 brintclab 14974 . . 3 (𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
4 df-br 5111 . . . . 5 (𝐴𝑟𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑟)
54imbi2i 336 . . . 4 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
65albii 1819 . . 3 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
73, 6bitr4i 278 . 2 (𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))
82, 7bitrdi 287 1 (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  {cab 2708  wss 3917  cop 4598   cint 4913   class class class wbr 5110  ccom 5645  cfv 6514  t+ctcl 14958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-trcl 14960
This theorem is referenced by:  brcnvtrclfv  14976  brtrclfvcnv  14977  trclfvcotr  14982
  Copyright terms: Public domain W3C validator