MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtrclfv Structured version   Visualization version   GIF version

Theorem brtrclfv 14184
Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
brtrclfv (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hint:   𝑉(𝑟)

Proof of Theorem brtrclfv
StepHypRef Expression
1 trclfv 14182 . . 3 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
21breqd 4967 . 2 (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵))
3 brintclab 14183 . . 3 (𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
4 df-br 4957 . . . . 5 (𝐴𝑟𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑟)
54imbi2i 337 . . . 4 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
65albii 1799 . . 3 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
73, 6bitr4i 279 . 2 (𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))
82, 7syl6bb 288 1 (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1518  wcel 2079  {cab 2773  wss 3854  cop 4472   cint 4776   class class class wbr 4956  ccom 5439  cfv 6217  t+ctcl 14167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-int 4777  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-iota 6181  df-fun 6219  df-fv 6225  df-trcl 14169
This theorem is referenced by:  brcnvtrclfv  14185  brtrclfvcnv  14186  trclfvcotr  14191
  Copyright terms: Public domain W3C validator