Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brtrclfv | Structured version Visualization version GIF version |
Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
brtrclfv | ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfv 14563 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) | |
2 | 1 | breqd 5064 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ 𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵)) |
3 | brintclab 14564 | . . 3 ⊢ (𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) | |
4 | df-br 5054 | . . . . 5 ⊢ (𝐴𝑟𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑟) | |
5 | 4 | imbi2i 339 | . . . 4 ⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
6 | 5 | albii 1827 | . . 3 ⊢ (∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 〈𝐴, 𝐵〉 ∈ 𝑟)) |
7 | 3, 6 | bitr4i 281 | . 2 ⊢ (𝐴∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)) |
8 | 2, 7 | bitrdi 290 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 ∈ wcel 2110 {cab 2714 ⊆ wss 3866 〈cop 4547 ∩ cint 4859 class class class wbr 5053 ∘ ccom 5555 ‘cfv 6380 t+ctcl 14548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-iota 6338 df-fun 6382 df-fv 6388 df-trcl 14550 |
This theorem is referenced by: brcnvtrclfv 14566 brtrclfvcnv 14567 trclfvcotr 14572 |
Copyright terms: Public domain | W3C validator |