MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtrclfv Structured version   Visualization version   GIF version

Theorem brtrclfv 15041
Description: Two ways of expressing the transitive closure of a binary relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
brtrclfv (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑅,𝑟
Allowed substitution hint:   𝑉(𝑟)

Proof of Theorem brtrclfv
StepHypRef Expression
1 trclfv 15039 . . 3 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
21breqd 5154 . 2 (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵))
3 brintclab 15040 . . 3 (𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
4 df-br 5144 . . . . 5 (𝐴𝑟𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑟)
54imbi2i 336 . . . 4 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
65albii 1819 . . 3 (∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵) ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ⟨𝐴, 𝐵⟩ ∈ 𝑟))
73, 6bitr4i 278 . 2 (𝐴 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵))
82, 7bitrdi 287 1 (𝑅𝑉 → (𝐴(t+‘𝑅)𝐵 ↔ ∀𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → 𝐴𝑟𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2108  {cab 2714  wss 3951  cop 4632   cint 4946   class class class wbr 5143  ccom 5689  cfv 6561  t+ctcl 15024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-fv 6569  df-trcl 15026
This theorem is referenced by:  brcnvtrclfv  15042  brtrclfvcnv  15043  trclfvcotr  15048
  Copyright terms: Public domain W3C validator