Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvbrvvdif Structured version   Visualization version   GIF version

Theorem brvbrvvdif 37622
Description: Binary relation with the complement under the universal class of ordered pairs is the same as with universal complement. (Contributed by Peter Mazsa, 28-Nov-2018.)
Assertion
Ref Expression
brvbrvvdif ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵𝐴(V ∖ 𝑅)𝐵))

Proof of Theorem brvbrvvdif
StepHypRef Expression
1 brvvdif 37621 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))
2 brvdif 37619 . 2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)
31, 2bitr4di 289 1 ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵𝐴(V ∖ 𝑅)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2098  Vcvv 3466  cdif 3937   class class class wbr 5138   × cxp 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator