Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brvbrvvdif Structured version   Visualization version   GIF version

Theorem brvbrvvdif 38248
Description: Binary relation with the complement under the universal class of ordered pairs is the same as with universal complement. (Contributed by Peter Mazsa, 28-Nov-2018.)
Assertion
Ref Expression
brvbrvvdif ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵𝐴(V ∖ 𝑅)𝐵))

Proof of Theorem brvbrvvdif
StepHypRef Expression
1 brvvdif 38247 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵))
2 brvdif 38245 . 2 (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)
31, 2bitr4di 289 1 ((𝐴𝑉𝐵𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵𝐴(V ∖ 𝑅)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3450  cdif 3913   class class class wbr 5109   × cxp 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator