| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brvbrvvdif | Structured version Visualization version GIF version | ||
| Description: Binary relation with the complement under the universal class of ordered pairs is the same as with universal complement. (Contributed by Peter Mazsa, 28-Nov-2018.) |
| Ref | Expression |
|---|---|
| brvbrvvdif | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ 𝐴(V ∖ 𝑅)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brvvdif 38245 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵)) | |
| 2 | brvdif 38243 | . 2 ⊢ (𝐴(V ∖ 𝑅)𝐵 ↔ ¬ 𝐴𝑅𝐵) | |
| 3 | 1, 2 | bitr4di 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴((V × V) ∖ 𝑅)𝐵 ↔ 𝐴(V ∖ 𝑅)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 class class class wbr 5102 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |