Step | Hyp | Ref
| Expression |
1 | | opabidw 5523 |
. . . . 5
⊢
(⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) |
2 | 1 | notbii 319 |
. . . 4
⊢ (¬
⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ¬ 𝜑) |
3 | | opelvvdif 37430 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖
{⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) |
4 | 3 | el2v 3480 |
. . . 4
⊢
(⟨𝑥, 𝑦⟩ ∈ ((V × V)
∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
5 | | opabidw 5523 |
. . . 4
⊢
(⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ¬ 𝜑) |
6 | 2, 4, 5 | 3bitr4i 302 |
. . 3
⊢
(⟨𝑥, 𝑦⟩ ∈ ((V × V)
∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}) |
7 | 6 | gen2 1796 |
. 2
⊢
∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖
{⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}) |
8 | | relxp 5693 |
. . . 4
⊢ Rel (V
× V) |
9 | | reldif 5814 |
. . . 4
⊢ (Rel (V
× V) → Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})) |
10 | 8, 9 | ax-mp 5 |
. . 3
⊢ Rel ((V
× V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
11 | | relopabv 5820 |
. . 3
⊢ Rel
{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} |
12 | | nfcv 2901 |
. . . . 5
⊢
Ⅎ𝑥(V
× V) |
13 | | nfopab1 5217 |
. . . . 5
⊢
Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
14 | 12, 13 | nfdif 4124 |
. . . 4
⊢
Ⅎ𝑥((V
× V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
15 | | nfopab1 5217 |
. . . 4
⊢
Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} |
16 | | nfcv 2901 |
. . . . 5
⊢
Ⅎ𝑦(V
× V) |
17 | | nfopab2 5218 |
. . . . 5
⊢
Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
18 | 16, 17 | nfdif 4124 |
. . . 4
⊢
Ⅎ𝑦((V
× V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
19 | | nfopab2 5218 |
. . . 4
⊢
Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} |
20 | 14, 15, 18, 19 | eqrelf 37426 |
. . 3
⊢ ((Rel ((V
× V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}) → (((V × V) ∖
{⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖
{⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}))) |
21 | 10, 11, 20 | mp2an 688 |
. 2
⊢ (((V
× V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖
{⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})) |
22 | 7, 21 | mpbir 230 |
1
⊢ ((V
× V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} |