Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vvdifopab Structured version   Visualization version   GIF version

Theorem vvdifopab 38216
Description: Ordered-pair class abstraction defined by a negation. (Contributed by Peter Mazsa, 25-Jun-2019.)
Assertion
Ref Expression
vvdifopab ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem vvdifopab
StepHypRef Expression
1 opabidw 5543 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
21notbii 320 . . . 4 (¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ¬ 𝜑)
3 opelvvdif 38215 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
43el2v 3495 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opabidw 5543 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ¬ 𝜑)
62, 4, 53bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})
76gen2 1794 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})
8 relxp 5718 . . . 4 Rel (V × V)
9 reldif 5839 . . . 4 (Rel (V × V) → Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
108, 9ax-mp 5 . . 3 Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
11 relopabv 5845 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
12 nfcv 2908 . . . . 5 𝑥(V × V)
13 nfopab1 5236 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
1412, 13nfdif 4152 . . . 4 𝑥((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
15 nfopab1 5236 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
16 nfcv 2908 . . . . 5 𝑦(V × V)
17 nfopab2 5237 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
1816, 17nfdif 4152 . . . 4 𝑦((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
19 nfopab2 5237 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
2014, 15, 18, 19eqrelf 38211 . . 3 ((Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}) → (((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})))
2110, 11, 20mp2an 691 . 2 (((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}))
227, 21mpbir 231 1 ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cop 4654  {copab 5228   × cxp 5698  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  dfssr2  38455
  Copyright terms: Public domain W3C validator