Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vvdifopab Structured version   Visualization version   GIF version

Theorem vvdifopab 36136
Description: Ordered-pair class abstraction defined by a negation. (Contributed by Peter Mazsa, 25-Jun-2019.)
Assertion
Ref Expression
vvdifopab ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem vvdifopab
StepHypRef Expression
1 opabidw 5406 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
21notbii 323 . . . 4 (¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ¬ 𝜑)
3 opelvvdif 36135 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
43el2v 3416 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ¬ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opabidw 5406 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ¬ 𝜑)
62, 4, 53bitr4i 306 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})
76gen2 1804 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})
8 relxp 5569 . . . 4 Rel (V × V)
9 reldif 5685 . . . 4 (Rel (V × V) → Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
108, 9ax-mp 5 . . 3 Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
11 relopabv 5691 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
12 nfcv 2904 . . . . 5 𝑥(V × V)
13 nfopab1 5123 . . . . 5 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
1412, 13nfdif 4040 . . . 4 𝑥((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
15 nfopab1 5123 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
16 nfcv 2904 . . . . 5 𝑦(V × V)
17 nfopab2 5124 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
1816, 17nfdif 4040 . . . 4 𝑦((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
19 nfopab2 5124 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
2014, 15, 18, 19eqrelf 36132 . . 3 ((Rel ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ∧ Rel {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}) → (((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑})))
2110, 11, 20mp2an 692 . 2 (((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑} ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}))
227, 21mpbir 234 1 ((V × V) ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wal 1541   = wceq 1543  wcel 2110  Vcvv 3408  cdif 3863  cop 4547  {copab 5115   × cxp 5549  Rel wrel 5556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-opab 5116  df-xp 5557  df-rel 5558
This theorem is referenced by:  dfssr2  36354
  Copyright terms: Public domain W3C validator