Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brv | Structured version Visualization version GIF version |
Description: Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5707. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brv | ⊢ 𝐴V𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5381 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | df-br 5079 | . 2 ⊢ (𝐴V𝐵 ↔ 〈𝐴, 𝐵〉 ∈ V) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴V𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 Vcvv 3430 〈cop 4572 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: brsset 34170 brtxpsd 34175 dffun10 34195 elfuns 34196 dfint3 34233 brub 34235 brvdif 36379 |
Copyright terms: Public domain | W3C validator |