![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brv | Structured version Visualization version GIF version |
Description: Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5824. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brv | ⊢ 𝐴V𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5484 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | df-br 5167 | . 2 ⊢ (𝐴V𝐵 ↔ 〈𝐴, 𝐵〉 ∈ V) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴V𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 〈cop 4654 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: brsset 35855 brtxpsd 35860 dffun10 35880 elfuns 35881 dfint3 35918 brub 35920 brvdif 38219 |
Copyright terms: Public domain | W3C validator |