![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brv | Structured version Visualization version GIF version |
Description: Two classes are always in relation by V. This is simply equivalent to ⟨𝐴, 𝐵⟩ ∈ V, and does not imply that V is a relation: see nrelv 5801. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brv | ⊢ 𝐴V𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5465 | . 2 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
2 | df-br 5150 | . 2 ⊢ (𝐴V𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ V) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ 𝐴V𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 |
This theorem is referenced by: brsset 34861 brtxpsd 34866 dffun10 34886 elfuns 34887 dfint3 34924 brub 34926 brvdif 37129 |
Copyright terms: Public domain | W3C validator |