| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brv | Structured version Visualization version GIF version | ||
| Description: Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5765. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| brv | ⊢ 𝐴V𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5426 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | df-br 5110 | . 2 ⊢ (𝐴V𝐵 ↔ 〈𝐴, 𝐵〉 ∈ V) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴V𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 〈cop 4597 class class class wbr 5109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 |
| This theorem is referenced by: brsset 35872 brtxpsd 35877 dffun10 35897 elfuns 35898 dfint3 35935 brub 35937 brvdif 38245 |
| Copyright terms: Public domain | W3C validator |