![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brv | Structured version Visualization version GIF version |
Description: Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5817. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
brv | ⊢ 𝐴V𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5478 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | df-br 5152 | . 2 ⊢ (𝐴V𝐵 ↔ 〈𝐴, 𝐵〉 ∈ V) | |
3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴V𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3481 〈cop 4640 class class class wbr 5151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 |
This theorem is referenced by: brsset 35884 brtxpsd 35889 dffun10 35909 elfuns 35910 dfint3 35947 brub 35949 brvdif 38257 |
Copyright terms: Public domain | W3C validator |