MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brv Structured version   Visualization version   GIF version

Theorem brv 5432
Description: Two classes are always in relation by V. This is simply equivalent to 𝐴, 𝐵⟩ ∈ V, and does not imply that V is a relation: see nrelv 5763. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
brv 𝐴V𝐵

Proof of Theorem brv
StepHypRef Expression
1 opex 5424 . 2 𝐴, 𝐵⟩ ∈ V
2 df-br 5108 . 2 (𝐴V𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ V)
31, 2mpbir 231 1 𝐴V𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  cop 4595   class class class wbr 5107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108
This theorem is referenced by:  brsset  35877  brtxpsd  35882  dffun10  35902  elfuns  35903  dfint3  35940  brub  35942  brvdif  38250
  Copyright terms: Public domain W3C validator