MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brv Structured version   Visualization version   GIF version

Theorem brv 5462
Description: Two classes are always in relation by V. This is simply equivalent to 𝐴, 𝐵⟩ ∈ V, and does not imply that V is a relation: see nrelv 5790. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
brv 𝐴V𝐵

Proof of Theorem brv
StepHypRef Expression
1 opex 5454 . 2 𝐴, 𝐵⟩ ∈ V
2 df-br 5139 . 2 (𝐴V𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ V)
31, 2mpbir 230 1 𝐴V𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3466  cop 4626   class class class wbr 5138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139
This theorem is referenced by:  brsset  35356  brtxpsd  35361  dffun10  35381  elfuns  35382  dfint3  35419  brub  35421  brvdif  37619
  Copyright terms: Public domain W3C validator