| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brv | Structured version Visualization version GIF version | ||
| Description: Two classes are always in relation by V. This is simply equivalent to 〈𝐴, 𝐵〉 ∈ V, and does not imply that V is a relation: see nrelv 5739. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| brv | ⊢ 𝐴V𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5402 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | df-br 5090 | . 2 ⊢ (𝐴V𝐵 ↔ 〈𝐴, 𝐵〉 ∈ V) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ 𝐴V𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: brsset 35931 brtxpsd 35936 dffun10 35956 elfuns 35957 dfint3 35996 brub 35998 brvdif 38297 |
| Copyright terms: Public domain | W3C validator |