| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opelvvdif | Structured version Visualization version GIF version | ||
| Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019.) |
| Ref | Expression |
|---|---|
| opelvvdif | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3936 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
| 2 | opelvvg 5695 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 〈𝐴, 𝐵〉 ∈ 𝑅 ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅))) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ∖ cdif 3923 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: vvdifopab 38278 brvvdif 38281 |
| Copyright terms: Public domain | W3C validator |