Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelvvdif Structured version   Visualization version   GIF version

Theorem opelvvdif 38240
Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019.)
Assertion
Ref Expression
opelvvdif ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))

Proof of Theorem opelvvdif
StepHypRef Expression
1 eldif 3972 . 2 (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 opelvvg 5729 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
32biantrurd 532 . 2 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)))
41, 3bitr4id 290 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2105  Vcvv 3477  cdif 3959  cop 4636   × cxp 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-opab 5210  df-xp 5694
This theorem is referenced by:  vvdifopab  38241  brvvdif  38244
  Copyright terms: Public domain W3C validator