Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelvvdif Structured version   Visualization version   GIF version

Theorem opelvvdif 38215
Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019.)
Assertion
Ref Expression
opelvvdif ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))

Proof of Theorem opelvvdif
StepHypRef Expression
1 eldif 3986 . 2 (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 opelvvg 5741 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
32biantrurd 532 . 2 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)))
41, 3bitr4id 290 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488  cdif 3973  cop 4654   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-xp 5706
This theorem is referenced by:  vvdifopab  38216  brvvdif  38219
  Copyright terms: Public domain W3C validator