Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelvvdif Structured version   Visualization version   GIF version

Theorem opelvvdif 38255
Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019.)
Assertion
Ref Expression
opelvvdif ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))

Proof of Theorem opelvvdif
StepHypRef Expression
1 eldif 3927 . 2 (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 opelvvg 5682 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
32biantrurd 532 . 2 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)))
41, 3bitr4id 290 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3450  cdif 3914  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647
This theorem is referenced by:  vvdifopab  38256  brvvdif  38259
  Copyright terms: Public domain W3C validator