| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opelvvdif | Structured version Visualization version GIF version | ||
| Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019.) |
| Ref | Expression |
|---|---|
| opelvvdif | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3927 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
| 2 | opelvvg 5682 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 ∈ (V × V)) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 〈𝐴, 𝐵〉 ∈ 𝑅 ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅))) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ ((V × V) ∖ 𝑅) ↔ ¬ 〈𝐴, 𝐵〉 ∈ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 〈cop 4598 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: vvdifopab 38256 brvvdif 38259 |
| Copyright terms: Public domain | W3C validator |