Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelvvdif Structured version   Visualization version   GIF version

Theorem opelvvdif 35673
 Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019.)
Assertion
Ref Expression
opelvvdif ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))

Proof of Theorem opelvvdif
StepHypRef Expression
1 opelvvg 5563 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
21biantrurd 536 . 2 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)))
3 eldif 3894 . 2 (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
42, 3syl6rbbr 293 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2112  Vcvv 3444   ∖ cdif 3881  ⟨cop 4534   × cxp 5521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-opab 5096  df-xp 5529 This theorem is referenced by:  vvdifopab  35674  brvvdif  35677
 Copyright terms: Public domain W3C validator