Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelvvdif Structured version   Visualization version   GIF version

Theorem opelvvdif 38241
Description: Negated elementhood of ordered pair. (Contributed by Peter Mazsa, 14-Jan-2019.)
Assertion
Ref Expression
opelvvdif ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))

Proof of Theorem opelvvdif
StepHypRef Expression
1 eldif 3921 . 2 (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 opelvvg 5672 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ (V × V))
32biantrurd 532 . 2 ((𝐴𝑉𝐵𝑊) → (¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅)))
41, 3bitr4id 290 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ ∈ ((V × V) ∖ 𝑅) ↔ ¬ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3444  cdif 3908  cop 4591   × cxp 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637
This theorem is referenced by:  vvdifopab  38242  brvvdif  38245
  Copyright terms: Public domain W3C validator