Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caov13 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
Ref | Expression |
---|---|
caov13 | ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | caov.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | caov.3 | . . 3 ⊢ 𝐶 ∈ V | |
4 | caov.com | . . 3 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
5 | caov.ass | . . 3 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
6 | 1, 2, 3, 4, 5 | caov31 7437 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
7 | 1, 2, 3, 5 | caovass 7408 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) |
8 | 3, 2, 1, 5 | caovass 7408 | . 2 ⊢ ((𝐶𝐹𝐵)𝐹𝐴) = (𝐶𝐹(𝐵𝐹𝐴)) |
9 | 6, 7, 8 | 3eqtr3i 2773 | 1 ⊢ (𝐴𝐹(𝐵𝐹𝐶)) = (𝐶𝐹(𝐵𝐹𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 (class class class)co 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 |
This theorem is referenced by: ltsonq 10583 mulcmpblnrlem 10684 |
Copyright terms: Public domain | W3C validator |