![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caov31 | Structured version Visualization version GIF version |
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
caov.1 | ⊢ 𝐴 ∈ V |
caov.2 | ⊢ 𝐵 ∈ V |
caov.3 | ⊢ 𝐶 ∈ V |
caov.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
caov.ass | ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) |
Ref | Expression |
---|---|
caov31 | ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caov.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | caov.3 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | caov.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | caov.ass | . . . 4 ⊢ ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) | |
5 | 1, 2, 3, 4 | caovass 7606 | . . 3 ⊢ ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵)) |
6 | caov.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
7 | 1, 2, 3, 6, 4 | caov12 7634 | . . 3 ⊢ (𝐴𝐹(𝐶𝐹𝐵)) = (𝐶𝐹(𝐴𝐹𝐵)) |
8 | 5, 7 | eqtri 2760 | . 2 ⊢ ((𝐴𝐹𝐶)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵)) |
9 | 1, 3, 2, 6, 4 | caov32 7633 | . 2 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵) |
10 | 2, 1, 3, 6, 4 | caov32 7633 | . . 3 ⊢ ((𝐶𝐹𝐴)𝐹𝐵) = ((𝐶𝐹𝐵)𝐹𝐴) |
11 | 2, 1, 3, 4 | caovass 7606 | . . 3 ⊢ ((𝐶𝐹𝐴)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵)) |
12 | 10, 11 | eqtr3i 2762 | . 2 ⊢ ((𝐶𝐹𝐵)𝐹𝐴) = (𝐶𝐹(𝐴𝐹𝐵)) |
13 | 8, 9, 12 | 3eqtr4i 2770 | 1 ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: caov13 7636 caov411 7638 |
Copyright terms: Public domain | W3C validator |