Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov31 Structured version   Visualization version   GIF version

Theorem caov31 7361
 Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1 𝐴 ∈ V
caov.2 𝐵 ∈ V
caov.3 𝐶 ∈ V
caov.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caov.ass ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
Assertion
Ref Expression
caov31 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem caov31
StepHypRef Expression
1 caov.1 . . . 4 𝐴 ∈ V
2 caov.3 . . . 4 𝐶 ∈ V
3 caov.2 . . . 4 𝐵 ∈ V
4 caov.ass . . . 4 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧))
51, 2, 3, 4caovass 7332 . . 3 ((𝐴𝐹𝐶)𝐹𝐵) = (𝐴𝐹(𝐶𝐹𝐵))
6 caov.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
71, 2, 3, 6, 4caov12 7360 . . 3 (𝐴𝐹(𝐶𝐹𝐵)) = (𝐶𝐹(𝐴𝐹𝐵))
85, 7eqtri 2824 . 2 ((𝐴𝐹𝐶)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵))
91, 3, 2, 6, 4caov32 7359 . 2 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐴𝐹𝐶)𝐹𝐵)
102, 1, 3, 6, 4caov32 7359 . . 3 ((𝐶𝐹𝐴)𝐹𝐵) = ((𝐶𝐹𝐵)𝐹𝐴)
112, 1, 3, 4caovass 7332 . . 3 ((𝐶𝐹𝐴)𝐹𝐵) = (𝐶𝐹(𝐴𝐹𝐵))
1210, 11eqtr3i 2826 . 2 ((𝐶𝐹𝐵)𝐹𝐴) = (𝐶𝐹(𝐴𝐹𝐵))
138, 9, 123eqtr4i 2834 1 ((𝐴𝐹𝐵)𝐹𝐶) = ((𝐶𝐹𝐵)𝐹𝐴)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2112  Vcvv 3444  (class class class)co 7139 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ral 3114  df-v 3446  df-un 3889  df-in 3891  df-ss 3901  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142 This theorem is referenced by:  caov13  7362  caov411  7364
 Copyright terms: Public domain W3C validator